Edge alignment of polyester (PET) films is important forachieving product quality and processing speed in winding, coating, drying, and other processes. The edge alignment can be achieved by lateral deflection control, provided that the film tension and transport speed are even at desired values. This article aims to correct the lateral deflection of films by designing robust controllers to swivel the guiding rollers and to maintain even tension and speed at target levels. The self-tuning neuro-proportional integral derivative controller and adaptive high-gain output feedback controller are adopted to guide the lateral deflection so that the film aligns at the desired position. A control scheme, neuron controller by associative learning, is used for maintaining tension and speed control. These strategies are applied to a simplified PET film processing system. The experimental results demonstrate that in our setup, the control schemes can effectively alleviate not only the lateral deflection but also the tension and speed fluctuation at target levels. C 2008 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.