The reaction of 1-ethynyl-8-halonaphthalenes 1 with nitriles in the presence of the catalytic system [NiBr(2)(dppe)]/Zn (dppe=1,2-bis(diphenylphosphino)ethane) is found to produce unusual pyrroloarenes 2. The carbon-nitrogen triple bond in nitrile is activated twice, and five new bonds are formed in a one-pot transformation, which causes a pyrrole and two six-membered rings to be generated simultaneously. The scope and limitations of this reaction are examined. Similarly, alkyl-bridged diynes also furnish the corresponding polycycles. Diaryl-substituted cycloadducts 2 (R(1)=Ar) are fluxional, because of the restriction in rotation of the aryl groups. The rotational barrier is studied by performing (1)H NMR experiments at various temperatures. The structures of several compounds are determined by X-ray crystallographic analysis. The photophysical and electrochemical properties of the pyrroloarenes are also investigated.
Depending on the electronic properties of their substituents, the major products generated by palladium-catalyzed cycloisomerizations of diarylalkynes are either highly substituted 8,8a-dihydrocyclopenta[a]indenes 3 or naphthalenes 4. The structures of these compounds were verified by X-ray crystallographic analysis. Many functional groups tolerated the reaction conditions evaluated in this study. The isotope-labeled experiments indicated that added water has a critical role in forming both classes of compounds. The photophysical and electrochemical properties of cycloadducts 3 and their analogues were systematically studied and compared with computational predictions based on density functional theory. Dihydrocyclopenta[a]indenes 3 in either solid or liquid form display strong luminescence, whereas cyclopenta[a]indene 11 j is practically nonfluorescent. The functional groups directly attached to the backbone of compound 3 significantly influenced physical properties. The steric effect arising from the aryl substituents caused different luminescence phenomena, including aggregation-induced and -enhanced emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.