An increase in the neutral current results in a malfunction of the low energy over current (LCO) protective relay and raises the neutral-to-ground voltage in three-phase, four-wire radial distribution feeders. Thus, the key point for mitigating its effect is to keep the current under a specific level. The most common approach for reducing the neutral current caused by the inherent imbalance of distribution feeders is to rearrange the phase connection between the distribution transformers and the load tapped-off points by using the metaheuristics algorithms. However, the primary task is to obtain the effective load data for phase rearrangement; otherwise, the outcomes would not be worthy of practical application. In this paper, the effective load data can be received from the feeder terminal unit (FTU) installed along the feeder of Taipower. The net load data consisting of customers’ power consumption and the power generation of distributed energy resources (DERs) were measured and transmitted to the feeder dispatch control center (FDCC). This paper proposes a method of establishing the equivalent full-scale net load model based on FTU data format, and the long short-term memory (LSTM) was adopted for monthly load forecasting. Furthermore, the full-scale net load model was built by the monthly per hour load data. Next, the particle swarm optimization (PSO) algorithm was applied to rearrange the phase connection of the distribution transformers with the aim of minimizing the neutral current. The outcomes of this paper are helpful for the optimal setting of the limit current of the LCO relay and to avoid its malfunction. Furthermore, the proposed method can also improve the three-phase imbalance of distribution feeders, thus reducing extra power loss and increasing the operating efficiency of three-phase induction motors.
Under the plan of net-zero carbon emissions in 2050, the high penetration of distributed renewable energies in distribution networks will cause the operation of more complicated distribution networks. The development of edge computing platforms will help the operator to monitor and compute the system status timely and locally, and it can ensure the security operation of the system. In this paper, a novel EDGE computing platform that is implemented by a graphics processing unit in the existing feeder terminal unit (FTU) is proposed for smart applications in distribution networks with distributed renewable energies and loads. This platform makes timely forecasts of the feeder status for the next seven days in accordance with historical weather, sun, and loading data. The forecast solver uses the machine learning long short-term memory (LSTM) method. Thereafter, the power calculation analyzers transform feeder topology into the circuit model for transient-state, steady-state, and symmetrical component analyses. An important-factor explainer parses the LSTM model into the concise value of each historical datum. All information transports to remote devices via the internet for the real-time monitor feature. The software stack of the EDGE platform consists of the database archive file system, time-series forecast solver, power flow analyzers, important-factor explainer, and message queuing telemetry transport (MQTT) protocol communication. All open-source software packages, such as SQLite, LSTM, ngspyce, Shapley Additive Explanations, and Paho-MQTT, form the aforementioned function. The developed EDGE forecast and power flow computing platform are helpful for achieving FTU becoming an Internet of Things component for smart operation in active distribution networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.