We have successfully prepared a new class of self-assembled biomaterial: a polypeptideblock-polypseudorotaxane diblock copolymer. This diblock copolymer is comprised of an R-helical polypeptide rod, based on γ-benzyl-L-glutamate, and an originally coiled segment P(EO19-r-PO3); it forms inclusion complexes with R-cyclodextrins (R-CDs) to give crystalline polypseudorotaxanes. Formation of the polypseudorotaxane converts the conformation of P(EO19-r-PO3) from a flexible chain into a rodlike structure, which results in a novel block copolymer exhibiting a rod-rod conformation. Intrinsic interactions (e.g., the polypseudorotaxane's channel-type crystallization, the polypeptide's secondary structure, and microphase separation) within and between these rod-rod diblock copolymers contribute to their hierarchical self-assembly behavior, which we characterized using DSC, 1 H NMR spectroscopy, 13 C CP/MAS NMR spectroscopy, WAXS, and SAXS. The data obtained from the WAXS and SAXS studies clearly indicate the formation of juxtaposed bilayer-like nanostructure featuring hexagonally packed PBLG stacks and channel-type polypseudorotaxane moieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.