Since the 1990s, brown root rot caused by Phellinus noxius (Corner) Cunningham has become a major tree disease in Taiwan. This fungal pathogen can infect more than 200 hardwood and softwood tree species, causing gradual to fast decline of the trees. For effective control, we must determine how the pathogen is disseminated and how the new infection center of brown root rot is established. We performed Illumina sequencing and de novo assembly of a single basidiospore isolate Daxi42 and obtained a draft genome of ~40 Mb. By comparing the 12,217 simple sequence repeat (SSR) regions in Daxi42 with the low-coverage Illumina sequencing data for four additional P. noxius isolates, we identified 154 SSR regions with potential polymorphisms. A set of 13 polymorphic SSR markers were then developed and used to analyze 329 P. noxius isolates collected from 73 tree species from urban/agricultural areas in 14 cities/counties all around Taiwan from 1989 to 2012. The results revealed a high proportion (~98%) of distinct multilocus genotypes (MLGs) and that none of the 329 isolates were genome-wide homozygous, which supports a possible predominant outcrossing reproductive mode in P. noxius. The diverse MLGs exist as discrete patches, so brown root rot was most likely caused by multiple clones rather than a single predominant strain. The isolates collected from diseased trees near each other tend to have similar genotype(s), which indicates that P. noxius may spread to adjacent trees via root-to-root contact. Analyses based on Bayesian clustering, F ST statistics, analysis of molecular variance, and isolation by distance all suggest a low degree of population differentiation and little to no barrier to gene flow throughout the P. noxius population in Taiwan. We discuss the involvement of basidiospore dispersal in disease dissemination.
The order Hymenochaetales of white rot fungi contain some of the most aggressive wood decayers causing tree deaths around the world. Despite their ecological importance and the impact of diseases they cause, little is known about the evolution and transmission patterns of these pathogens. Here, we sequenced and undertook comparative genomic analyses of Hymenochaetales genomes using brown root rot fungus Phellinus noxius, wood-decomposing fungus Phellinus lamaensis, laminated root rot fungus Phellinus sulphurascens and trunk pathogen Porodaedalea pini. Many gene families of lignin-degrading enzymes were identified from these fungi, reflecting their ability as white rot fungi. Comparing against distant fungi highlighted the expansion of 1,3-beta-glucan synthases in P. noxius, which may account for its fast-growing attribute. We identified 13 linkage groups conserved within Agaricomycetes, suggesting the evolution of stable karyotypes. We determined that P. noxius has a bipolar heterothallic mating system, with unusual highly expanded ~60 kb A locus as a result of accumulating gene transposition. We investigated the population genomics of 60 P. noxius isolates across multiple islands of the Asia Pacific region. Whole-genome sequencing showed this multinucleate species contains abundant poly-allelic single nucleotide polymorphisms with atypical allele frequencies. Different patterns of intra-isolate polymorphism reflect mono-/heterokaryotic states which are both prevalent in nature. We have shown two genetically separated lineages with one spanning across many islands despite the geographical barriers. Both populations possess extraordinary genetic diversity and show contrasting evolutionary scenarios. These results provide a framework to further investigate the genetic basis underlying the fitness and virulence of white rot fungi.
The ecology and genetic diversity of model yeast Saccharomyces cerevisiae prior to human domestication remain poorly understood. Taiwan is regarded as part of this yeast's geographic birthplace where the most divergent natural lineage was discovered. Here, we extensively sampled the broad-leaf forests across this continental island to probe the ancestral species diversity. We found that S. cerevisiae is distributed ubiquitously at low abundance in the forests. Whole-genome sequencing of 121 isolates revealed nine distinct lineages that diverged from Asian lineages during the Pleistocene, when a transient continental shelf land bridge connected Taiwan to other major landmasses. Three lineages are endemic to Taiwan and six are widespread in Asia, making this region a focal biodiversity hotspot. Both ancient and recent admixture events were detected between natural lineages and a genetic ancestry component associated with isolates from fruits was detected in most admixed isolates. Collectively, Taiwanese isolates harbor genetic diversity comparable to that of the whole Asia continent, and different lineages have coexisted at a fine spatial scale even on the same tree. Patterns of variations within each lineage revealed that S. cerevisiae is highly clonal and predominantly reproduces asexually in nature. We identified different selection patterns shaping the coding sequences of natural lineages and found fewer gene family expansion and contractions which contrast with domesticated lineages. This study establishes that S. cerevisiae has rich natural diversity sheltered from human influences, making it a powerful model system in microbial ecology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.