The ecology and genetic diversity of model yeast Saccharomyces cerevisiae prior to human domestication remain poorly understood. Taiwan is regarded as part of this yeast's geographic birthplace where the most divergent natural lineage was discovered. Here, we extensively sampled the broad-leaf forests across this continental island to probe the ancestral species diversity. We found that S. cerevisiae is distributed ubiquitously at low abundance in the forests. Whole-genome sequencing of 121 isolates revealed nine distinct lineages that diverged from Asian lineages during the Pleistocene, when a transient continental shelf land bridge connected Taiwan to other major landmasses. Three lineages are endemic to Taiwan and six are widespread in Asia, making this region a focal biodiversity hotspot. Both ancient and recent admixture events were detected between natural lineages and a genetic ancestry component associated with isolates from fruits was detected in most admixed isolates. Collectively, Taiwanese isolates harbor genetic diversity comparable to that of the whole Asia continent, and different lineages have coexisted at a fine spatial scale even on the same tree. Patterns of variations within each lineage revealed that S. cerevisiae is highly clonal and predominantly reproduces asexually in nature. We identified different selection patterns shaping the coding sequences of natural lineages and found fewer gene family expansion and contractions which contrast with domesticated lineages. This study establishes that S. cerevisiae has rich natural diversity sheltered from human influences, making it a powerful model system in microbial ecology.
This paper embarks upon the three levels of analysis ranging from nanoscale materials synthesis to combination and functionality. Firstly, we have prepared anatase TiO2nanospindles with an even length of about 200 nm and a central width of about 25 nm by hydrothermal synthesis method at 100°C for 6 h. Secondly, we have dispersed TiO2nanospindles on the surface of activated carbon (AC) and fabricated TiO2/AC compositeviaa dip-coating method. Thirdly, the TiO2/AC composite has been studied as the photocatalyst to remove the organic contaminants in the waste water and exhibits excellent degradation rate in comparison with pure anatase TiO2nanospindles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.