The cultivated peanut (Arachis hypogaea L.) is an important oil crop but has a narrow genetic diversity. Molecular markers can be used to probe the genetic diversity of various germplasm. In this study, the restriction site associated DNA (RAD) approach was utilized to sequence 31 accessions of Taiwanese peanut germplasm, leading to the identification of a total of 17,610 single nucleotide polymorphisms (SNPs). When we grouped these 31 accessions into two subsets according to origin, we found that the “global” subset (n = 17) was more genetically diverse than the “local” subset (n = 14). Concerning botanical varieties, the var. fastigiata subset had greater genetic diversity than the other two subsets of var. vulgaris and var. hypogaea, suggesting that novel genetic resources should be introduced into breeding programs to enhance genetic diversity. Principal component analysis (PCA) of genotyping data separated the 31 accessions into three clusters largely according to the botanical varieties, consistent with the PCA result for 282 accessions genotyped by 14 kompetitive allele-specific PCR (KASP) markers developed in this study. The SNP markers identified in this work not only revealed the genetic relationship and population structure of current germplasm in Taiwan, but also offer an efficient tool for breeding and further genetic applications.
The cultivated peanut (Arachis hypogaea L.) is an important oil crop but has a narrow genetic diversity. Molecular markers can be used to probe the genetic diversity of various germplasm. In this study, the restriction site associated DNA (RAD) approach was utilized to sequence 31 accessions of Taiwanese peanut germplasm, leading to the identification of a total of 17,610 single nucleotide polymorphisms (SNPs). The origin of these 31 accessions is contrasted so the global subset (n = 17) has greater genetic diversity than the local subset (n = 14). Concerning botanical varieties, the var. fastigiata subset has greater genetic diversity than the other two subsets of var. vulgaris and var. hypogaea, suggesting that novel genetic resources should be introduced into breeding programs to enhance genetic diversity. Principal component analysis (PCA) using genotyping data separated the 31 accessions into three clusters largely according to the botanical varieties, consistent with the PCA result for 282 accessions genotyped by 14 kompetitive allele-specific PCR (KASP) markers developed in this study. The SNP markers identified in this work not only revealed the genetic relationship and population structure of current germplasm in Taiwan, but also offer an efficient tool for breeding and further genetic applications.
Rice (Oryza sativa L.) is an important crop worldwide. Functional rice has exhibited health benefits. The aim of this study was to use marker-assisted selection (MAS) to introgress two genes, GE (giant embryo) and OsALDH7 (aldehyde dehydrogenase, golden-like endosperm) into colored rice and obtain high yield functional rice. CNY103108 and CNY103107 are two rice lines with golden-like endosperms and giant embryos. They were used as the donor parents. CNY922401, an elite purple waxy rice line, and TNGSW26, an indica red waxy rice cultivar were used as the recurrent parents. Foreground selection of the progenies was completed using functional markers for GE and OsALDH7, and background selection was completed using molecular markers to recover the background of the recurrent parents. MAS results showed a purple functional rice population (PFR) (CNY922401/CNY103108), with the recovery rate of the recurrent parental genome as 91.3%, and a red functional rice population (RFR) (TNGSW26/CNY103107) with the recovery as 89.8%. After five-season yield trials and several antioxidant activities analyses, PFR32 and RFR13 lines, which have similar yields and antioxidant activities, were selected as the recurrent parents with a golden-like endosperm and a giant embryo. For a biofortification purpose, they can become valuable products and be adapted to the current agricultural community.
Cultivated peanut (Arachis hypogaea L.) is an important crop worldwide, and peanut germplasm is an important genetic resource for peanut breeding. The two-season cropping system is common in tropical and subtropical regions, which are the main peanut production areas. The weather in the two cropping seasons is usually distinct and makes germplasm evaluation challenging. In this study, random stratified sampling based on market type was applied to build a core collection. Comparisons between the original entire collection and core collection were conducted. Two seasons field trials were performed with additional three seasons rust resistance evaluation trials. Principal component analysis and genotype-by-trait biplots were utilized as selection tools. Which-won-where/what and stability plot relationships were determined to provide breeders with an easy and efficient method for selection. Rust resistance simple sequence repeat and single nucleotide polymorphism markers were used to screen the germplasm. Some resistant accessions showed susceptible phenotypes, indicating that under Taiwan’s environment, the favored rust physiological races are different from those of other areas. Some potential rust resistance lines were discovered and validated, which can survive under variable weather conditions in a two-season cropping system. A set of markers was developed for utilization for rust resistance screening in Taiwan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.