Laminaripentaose-producing -1,3-glucanase (LPHase), a member of glycoside hydrolase family 64, cleaves a longchain polysaccharide -1,3-glucan into specific pentasaccharide oligomers. The crystal structure of LPHase from Streptomyces matensis DIC-108 was solved to 1.62 Å resolution using multiple-wavelength anomalous dispersion methods. The LPHase structure reveals a novel crescent-like fold; it consists of a barrel domain and a mixed (␣/) domain, forming a wide-open groove between the two domains. The liganded crystal structure was also solved to 1.
Laminaripentaose-producing β-1,3-glucanase (LPHase) from Streptomyces matensis DIC-108 uniquely catalyzes the hydrolysis of β-1,3-glucan to release laminaripentaose as the predominant product. For studying this novel enzyme, the gene of LPHase was reconstructed with polymerase chain reaction and over-expressed in Escherichia coli. The recombinant wild-type enzyme and various mutants were further purified to >90% homogeneity on an ion-exchange chromatograph. The catalysis of the recombinant LPHase is confirmed to follow a one-step single-displacement mechanism with (1)H-NMR spectrometry. To determine the amino-acid residues essential for the catalysis, more than ten residues, including five highly conserved residues--Asp(143), Glu(154), Asp(170), Asp(376) and Asp(377), were mutated. Among the mutants, E154Q, E154G, D174N and D174G significantly lost catalytic activity. Further investigation with chemical rescue using sodium azide on E154G and D174G confirmed that Glu(154) functions as the general acid whereas Asp(170) serves as the general base in a catalytic turnover. This work is the first report that provides direct information for the identification of the essential residues of GH-64 through kinetic examination.
Plant ribosome-inactivating proteins specifically cleave an N-glycosidic bond of a unique adenosine in the largest ribosomal RNA, releasing an adenine from ribosomes of different sources. Here, 1H-nuclear magnetic resonance is used to analyze the enzymatic products of the A-chain of cinnamomin, a type-II ribosome-inactivating protein (RIP) acting on the nucleotides in situ. The enzymatic activities of the RIP on nine nucleotides are compared. Cinnamomin A-chain can cleave the N-glycosidic bond and release an adenine base from adenine nucleotides except 5'-ATP; however, it cannot act on 5'-GMP, 5'-CMP, and 5'-UMP. The A-chain in the mixture of cinnamomin A- and B-chain exhibits higher activity toward adenine nucleotides than the A-chain alone does, suggesting that the B-chain can conformationally stabilize the A-chain. Intact cinnamomin also exhibits lower activity toward adenine nucleotides. However, cinnamomin B-chain and heat-denatured intact cinnamomin cannot hydrolyze all the tested nucleotides. We conclude that hydrolysis of the N-C glycosidic bond of nucleotide compounds by cinnamomin A-chain has a base preference, and the negatively charged phosphate group(s) reduces the recognition ability of the A-chain to adenine nucleotide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.