The aryl propargylic alcohol 1-[2-(thiophen-3-yl)phenyl]prop-2-yn-1-ol (1a) is readily prepared from 2-(thiophen-3-yl)benzaldehyde. In the presence of visible light, treatment of 1a with one-half mole equivalent of [Ru]Cl ([Ru]=Cp(dppe)Ru) (dppe=1,2-bis(diphenylphosphino)ethane) and NH4PF6 in O2 affords the naphtha[2,1-b]thiophene-4-carbaldehyde (4a) in high yields. The cyclization reaction of 1a proceeds through the formation of the carbene complex 2a that contains the naphtha[2,1-b]thiophene ring, which is isolated in a 1:1 stoichiometric reaction. The C-C bond formation between the inner carbon of the terminal triple bond and the heterocyclic ring is confirmed by structure determination of 2a using single-crystal X-ray diffraction analysis. Facile oxygenation of 2a by O2 yields the aldehyde product 4a accompanied by the formation of phosphine oxide of dppe. Oxygen is most likely activated by coordination to the ruthenium center when one PPh2 unit of the dppe ligand dissociates. This dissociated PPh2 unit then reacts with the coordinated oxygen nearby to generate half-oxidized dppe ligand and an unobserved oxo-carbene intermediate. Coupling of the oxo/carbene ligands followed by demetalation then yields 4a. Presumably the resulting complex with the half-oxidized dppe ligand continuously promotes cyclization/oxygenation of 1a to yield the second aldehyde molecule. In alcohol such as MeOH or EtOH, the oxygenation reaction affords a mixture of 4a and the corresponding esters 5a or 5a'. Four other aryl propargylic alcohols 1b-e, which contain thiophen-2-yl, isopropenyl, fur-3-yl, and fur-2-yl, respectively, on the aryl ring are also prepared. Analogous aldehydes 4b-e are similarly prepared from 1b-e, respectively. For oxygenations of 1b, 1d, and 1e in alcohol, mixtures of aldehyde 4, ester 5, and acetal 8 are obtained. The carbene complex 2b obtained from 1b was also characterized by single-crystal X-ray diffraction analysis. The UV/Vis spectra of 2a and 2b consist of absorption bands with a high extinction coefficient. From DFT calculations on 2a and 2b, the visible light is found to populate the LUMO antibonding orbital of mainly Ru=C bonds, thereby weakening the Ru=C bond and promoting the oxygenation/demetalation reactions of 2.
The coupling reaction of N-propargyl semi-salen compound 1d on [Ru]-Cl ([Ru] = Cp(PPh 3 ) 2 Ru) generates the carbene complex 3d containing a substituted 2H-chromene unit in 7 d. The precursor vinylidene complex 2d is isolated from the reaction of the propargyl group of 1d with [Ru]-Cl in 12 h. Addition of an o-cresol moiety to Cα and Cβ of the vinylidene ligand of 2d takes place in a longer reaction time to yield 3d. Reactions of [Ru]-Cl with other analogous compounds 1a, 1b, and 1c, in excess, also afford carbene complexes 3a, 3b, and 3c, respectively, in 48 h via a similar coupling process. Their precursor vinylidene complexes 2a, 2b, and 2c are also observed in 12 h. Structures of 2 and 3 are determined on the basis of spectroscopic data. The solid state structure of the dppe analogue 3a′ is further confirmed by X-ray diffraction analysis. The added o-cresol part comes from compounds 1, instead of aldehyde which is confirmed by the cross-coupling reactions of 2 and 1 using mass spectrometry. For comparison, treatment of [Ru]Cl with the amine analogue 13b retaining the propargyl and phenol moieties yields no coupling product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.