Novel one-dimensional (1D) heterostructure arrays composed of CuO nanowire cores, intermediate InS nanostructures, and ZnO nanorod sheaths (i.e. CuO/InS/ZnO heterostructure arrays) have been successfully synthesized by a multi-step process. First, single-crystalline CuO nanowires were directly grown on flexible Cu mesh substrates using a one-step annealing process under ambient conditions. Second, InS nanostructures and ZnO nanorods were sequentially grown on the CuO nanowires by a two-step hydrothermal method at low reaction temperature. The morphology, crystal structures, and optical properties of the CuO/InS/ZnO heterostructure arrays were studied by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive spectroscopy, and photoluminescence spectroscopy. The resultant ternary CuO/InS/ZnO heterostructure arrays exhibit excellent photocatalytic activity in the photodegradation of rhodamine 6G (R6G) under 10 W UV light irradiation, which is much higher than that of single-component (CuO nanowire arrays) or two-component systems (CuO/InS heterostructure arrays). Furthermore, the reusability test demonstrates that the CuO/InS/ZnO heterostructure arrays on the Cu mesh still maintain high photocatalytic activity in the degradation of three kinds of organic pollutants even after five cycles, without any significant decline. These findings provide an insight into the design and synthesis of new CuO-based composites to effectively improve their photocatalytic performance.
Vertical-aligned CuO nanowires have been directly fabricated on Cu foil through a facile thermal oxidation process by a hotplate at 550 °C for 6 h under ambient conditions. The intermediate layer of resorcinol–formaldehyde (RF) and silver (Ag) nanoparticles can be sequentially deposited on Cu nanowires to form CuO@RF@Ag core-shell nanowires by a two-step wet chemical approach. The appropriate resorcinol weight and silver nitrate concentration can be favorable to grow the CuO@RF@Ag nanowires with higher surface-enhanced Raman scattering (SERS) enhancement for detecting rhodamine 6G (R6G) molecules. Compared with CuO@Ag nanowires grown by ion sputtering, CuO@RF@Ag nanowires exhibited a higher SERS enhancement factor of 5.33 × 108 and a lower detection limit (10−12 M) for detecting R6G molecules. This result is ascribed to the CuO@RF@Ag nanowires with higher-density hot spots and surface-active sites for enhanced high SERS enhancement, good reproducibility, and uniformity. Furthermore, the CuO@RF@Ag nanowires can also reveal a high-sensitivity SERS-active substrate for detecting amoxicillin (10−10 M) and 5-fluorouracil (10−7 M). CuO@RF@Ag nanowires exhibit a simple fabrication process, high SERS sensitivity, high reproducibility, high uniformity, and low detection limit, which are helpful for the practical application of SERS in different fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.