Autophagy is a catabolic pathway used by cells to support metabolism in response to starvation and to clear damaged proteins and organelles in response to stress. We report here that expression of a H-ras V12 or K-ras V12 oncogene up-regulates basal autophagy, which is required for tumor cell survival in starvation and in tumorigenesis.In Ras-expressing cells, defective autophagosome formation or cargo delivery causes accumulation of abnormal mitochondria and reduced oxygen consumption. Autophagy defects also lead to tricarboxylic acid (TCA) cycle metabolite and energy depletion in starvation. As mitochondria sustain viability of Ras-expressing cells in starvation, autophagy is required to maintain the pool of functional mitochondria necessary to support growth of Ras-driven tumors. Human cancer cell lines bearing activating mutations in Ras commonly have high levels of basal autophagy, and, in a subset of these, down-regulating the expression of essential autophagy proteins impaired cell growth. As cancers with Ras mutations have a poor prognosis, this ''autophagy addiction'' suggests that targeting autophagy and mitochondrial metabolism are valuable new approaches to treat these aggressive cancers.
(R.N., S.P., D.S., E.M.)Fructose (Fru) is a major storage form of sugars found in vacuoles, yet the molecular regulation of vacuolar Fru transport is poorly studied. Although SWEET17 (for SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERS17) has been characterized as a vacuolar Fru exporter in leaves, its expression in leaves is low. Here, RNA analysis and SWEET17-b-glucuronidase/-GREEN FLUORESCENT PROTEIN fusions expressed in Arabidopsis (Arabidopsis thaliana) reveal that SWEET17 is highly expressed in the cortex of roots and localizes to the tonoplast of root cells. Expression of SWEET17 in roots was inducible by Fru and darkness, treatments that activate accumulation and release of vacuolar Fru, respectively. Mutation and ectopic expression of SWEET17 led to increased and decreased root growth in the presence of Fru, respectively. Overexpression of SWEET17 specifically reduced the Fru content in leaves by 80% during cold stress. These results intimate that SWEET17 functions as a Fru-specific uniporter on the root tonoplast. Vacuoles overexpressing SWEET17 showed increased [ 14 C]Fru uptake compared with the wild type. SWEET17-mediated Fru uptake was insensitive to ATP or treatment with NH 4 Cl or carbonyl cyanide m-chlorophenyl hydrazone, indicating that SWEET17 functions as an energy-independent facilitative carrier. The Arabidopsis genome contains a close paralog of SWEET17 in clade IV, SWEET16. The predominant expression of SWEET16 in root vacuoles and reduced root growth of mutants under Fru excess indicate that SWEET16 also functions as a vacuolar transporter in roots. We propose that in addition to a role in leaves, SWEET17 plays a key role in facilitating bidirectional Fru transport across the tonoplast of roots in response to metabolic demand to maintain cytosolic Fru homeostasis.
Metastasis is the major cause of poor prognosis in colorectal cancer (CRC), and increasing evidence supports the contribution of miRNAs to cancer progression. Here, we found that high expression of miR-103 and miR-107 (miR-103/107) was associated with metastasis potential of CRC cell lines and poor prognosis in patients with CRC. We showed that miR-103/107 targeted the known metastasis suppressors death-associated protein kinase (DAPK) and Kr€ uppel-like factor 4 (KLF4) in CRC cells, resulting in increased cell motility and cell-matrix adhesion and decreased cell-cell adhesion and epithelial marker expression. miR-103/107 expression was increased in the presence of hypoxia, thereby potentiating DAPK and KLF4 downregulation and hypoxiainduced motility and invasiveness. In mouse models of CRC, miR-103/107 overexpression potentiated local invasion and liver metastasis effects, which were suppressed by reexpression of DAPK or KLF4. miR-103/107-mediated downregulation of DAPK and KLF4 also enabled the colonization of CRC cells at a metastatic site. Clinically, the signature of a miR-103/107 high, DAPK low, and KLF4 low expression profile correlated with the extent of lymph node and distant metastasis in patients with CRC and served as a prognostic marker for metastasis recurrence and poor survival. Our findings therefore indicate that miR-103/107-mediated repression of DAPK and KLF4 promotes metastasis in CRC, and this regulatory circuit may contribute in part to hypoxia-stimulated tumor metastasis. Strategies that disrupt this regulation might be developed to block CRC metastasis. Cancer Res; 72(14); 3631-41. Ó2012 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.