The estimation of soil erosion in Taiwan and many countries of the world is based on the widely used universal soil loss equation (USLE), which includes the factor of soil erodibility (K-factor). In Taiwan, K-factor values are referenced from past research compiled in the Taiwan Soil and Water Conservation Manual, but there is limited data for the downstream area of the Shihmen reservoir watershed. The designated K-factor from the manual cannot be directly applied to large-scale regional levels and also cannot distinguish and clarify the difference of soil erosion between small field plots or subdivisions. In view of the above, this study establishes additional values of K-factor by utilizing the double rings infiltration test and measures of soil physical–chemical properties and increases the spatial resolution of K-factor map for Shihmen reservoir watershed. Furthermore, the established values of K-factors were validated with the designated value set at Fuxing Sanmin from the manual for verifying the correctness of estimates. It is found that the comparative results agree well with established estimates within an allowable error range. Thus, the K-factors established by this study update the previous K-factor system and can be spatially estimated for any area of interest within the Shihmen reservoir watershed and improving upon past limitations.
Abstract. The occurrence of typhoon Herb in 1996 caused massive landslides in the Shenmu area of Taiwan. Many people died and stream and river beds were covered by meters of debris. Debris flows almost always take place in the Shenmu area during the flood season, especially in the catchment areas around Tsushui river and Aiyuzih river. Anthropogenic and natural factors that cause debris flow occurrences are complex and numerous. The precise conditions of initiation are difficult to be identified, but three factors are generally considered to be the most important ones, i.e. rainfall characteristics, geologic conditions and topography. This study proposes a simple and feasible process that combines remote sensing technology and multi-stage high-precision DTMs from aerial orthoimages and airborne LiDAR with field surveys to establish a connection between three major occurrence factors that trigger debris flows in the Shenmu area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.