STUDY QUESTIONIn PGS, does chromosomal constitution differ among trophectoderm (TE) biopsy sites and between them and the inner cell mass (ICM)?SUMMARY ANSWERThe ploidy concordance between ICM and TE was independent of whether the biopsy site in the TE was near to or far from the ICM.WHAT IS KNOWN ALREADYTE biopsies are considered less harmful to developing embryos than blastomere biopsies. Removal of multi-cellular samples permits high-resolution next-generation sequencing (Veriseq NGS) to detect aneuploidy present in a minority of cells (mosaicism of diploid and aneuploid cells). However, the prevalence of ploidy discrepancies between different TE biopsy sites and the ICM, as well as confined mosaicism (aneuploidy only in a particular area), has not been established.STUDY DESIGN, SIZE, DURATIONBiopsies were taken from a site opposite to the ICM (TE1), near the ICM (TE2) and within the ICM of the same embryo in 33 donated blastocysts obtained from 12 volunteer patients. The samples were analyzed by the Veriseq NGS to assess ploidy concordance.PARTICIPANTS/MATERIALS, SETTING, METHODSThe mean age of the patients was 34.4 years, and samples from all three biopsy sites were achieved in 29 frozen thawed blastocysts. The aneuploid percentage in each sample was interpreted by Veriseq NGS at the finest resolution involving the number of reads after filtering, sample overall noise score, and average quality/alignment scores according to the Veriseq quality control assessment. Ploidy concordance was then assessed between different TE fractions, and between the TE and ICM.MAIN RESULTS AND THE ROLE OF CHANCEThe euploid rates were similar in the TEs and ICM, and no preferential allocation of euploid lineage within a blastocyst was demonstrated. Whether the biopsy site in the TE was near to or far from the ICM, the chromosomal consistency rate was similar [TE1-to-ICM, 86.2% (25/29) versus TE2-to-ICM, 89.7% (26/29); P = 1.0], suggesting that the cells with different chromosomal components may spread randomly throughout the TE. The following two types of inconsistent PGS conclusions between TE and ICM due to confined mosaicism were observed: (i) euploid TE with mosaic ICM (3%) (1/29); and (ii) mosaic TE with euploid ICM (3%) (1/29) or with aneuploid ICM (7%) (2/29). Thus, the overall rate of confined mosaicism was 14% (4/29).LARGE SCALE DATAN/A.LIMITATION, REASONS FOR CAUTIONThe approach used in the present study was affected by biopsy manipulation limitations involving possible cell contamination and the technical challenge of comprehensive chromosomal screening (CCS) procedures.WIDER IMPLICATIONS OF THE FINDINGSThe rate of confined mosaicism in the blastocysts was estimated in this preliminary study, thus, specifying the incidence of biological sampling biases. The results also verified the random distribution of different cell lineages, and the representative value of a single biopsied sample from the TE.STUDY FUNDING AND CONFLICT OF INTEREST(S)No external funding was obtained; all the authors declare no conflicts of...
BackgroundChromosomal mosaicism is observed as the presence of both euploid and aneuploid cells in a particular blastocyst. Recent studies have reported that the implantation rate of mosaic embryo transfer is remarkably lower than the euploid embryos. The superior capability of next-generation sequencing (NGS) to detect chromosomal mosaicism in preimplantation genetic screening (PGS) remains controversial, and several data displayed similar implantation and pregnancy rates using NGS or array comparative genomic hybridization (aCGH).ResultsIn this study, the main inconsistency of aneuploidy detection and clinical performance between the NGS and aCGH were assessed. The phase I consisted of a parallel comparison in 182 blastocysts from 45 selected PGS patients for both the NGS and aCGH platforms. The phase II retrospectively compared the clinical outcomes of 90 patients with NGS-screened euploid embryo transfer to that of 129 patients with aCGH-screened euploid embryo transfer. The parallel comparison showed that the inconsistency of embryo euploidy was 11.8% (p = 0.01). Chromosomal mosaicism (10.7% with NGS vs. 3.9% with aCGH) and segmental aneuploidy (10.7% with NGS vs. 6.7% with aCGH) contributed to the discrepancy mainly. The chromosomally mosaic embryos (20%–50% of aneuploidy) and several embryos with segmental aneuploidy (≥10 Mbp) were hard to distinguish using the aCGH platform, but could be clearly identified using the NGS platform. After the first euploid embryo cryotransfer, the β-HCG(+) rate and implantation rate significantly increased in the PGS/NGS patients (HCG[+] rate: 73.3% in PGS/NGS vs. 60.5% in PGS/aCGH, p = 0.048; implantation rate: 53.2% in PGS/NGS vs. 45.0% in PGS/aCGH, p = 0.043). The clinical and ongoing pregnancy rates appeared higher in the NGS group, but did not reached statistical significance.ConclusionsThe results demonstrated that the NGS platform can identify embryos with chromosomal mosaicism and segmental aneuploidy more precisely than the aCGH platform, and the following clinical performance of NGS was more favorable.
The assessment of embryo viability for in vitro fertilization (IVF) is mainly based on subjective visual analysis, with the limitation of intra- and inter-observer variation and a time-consuming task. In this study, we used deep learning with large dataset of microscopic embryo images to develop an automated grading system for embryo assessment. This study included a total of 171,239 images from 16,201 embryos of 4,146 IVF cycles at Stork Fertility Center (https://www.e-stork.com.tw) from March 6, 2014 to April 13, 2018. The images were captured by inverted microscope (Zeiss Axio Observer Z1) at 112 to 116 hours (Day 5) or 136 to 140 hours (Day 6) after fertilization. Using a pre-trained network trained on the ImageNet dataset as convolution base, we applied Convolutional Neural Network (CNN) on embryo images, using ResNet50 architecture to fine-tune ImageNet parameters. The predicted grading results was compared with the grading results from trained embryologists to evaluate the model performance. The images were labeled by trained embryologists, based on Gardner’s grading system: blastocyst development ranking from 3–6, ICM quality as A, B, or C; and TE quality as a, b, or c. After pre-processing, the images were divided into training, validation, and test groups, in which 60% were allocated to the training group, 20% to the validation group, and 20% to the test group. The ResNet50 algorithm was trained on the 60% images allocated to the training group, and the algorithm’s performance was evaluated using the 20% images allocated to the test group. The results showed an average predictive accuracy of 75.36% for the all three grading categories: 96.24% for blastocyst development, 91.07% for ICM quality, and 84.42% for TE quality. To the best of our knowledge, this is the first study of an automatic embryo grading system using large dataset from Asian population. Combing the promising results obtained in this study with time-lapse microscope system integrated with IVF Electronic Medical Record platform, a fully automated and non-invasive pipeline for embryo assessment will be achieved.
Mosaicism, known as partial aneuploidies, mostly originates from mitotic errors during the post-zygotic stage; it consists of different cell lineages within a human embryo. The incidence of mosaicism has not been shown to correlate with maternal age, and its correlation with individual chromosome characteristics has not been well investigated. In this study, the results of preimplantation genetic testing for aneuploidy (PGT-A) derived from 4,036 blastocysts (930 IVF couples) were collected from 2015 to 2017. Via next-generation sequencing for comprehensive chromosome screening, embryo ploidy was identified as aneuploid, mosaic, and euploid. Total mosaicism was classified into two categories: “mosaic euploid/aneuploidy” (with mosaic aneuploidy between 20 and 80%) and “mosaic and aneuploidy” (a uniformly abnormal embryo superimposed with mosaic aneuploidies). Frequency of mosaicism was analyzed according to the function of chromosomal lengths, which divides involved chromosomes into three groups: group A (156–249 Mb), group B (102–145 Mb), and group C (51–90 Mb). The results show that the aneuploidy was more frequent in group C than in group A and group B (A: 23.7%, B: 35.1, 41.2%, p < 0.0001), while the mosaicism was more frequent in group A and group B than in group C [(Mosaic euploid/aneuploid) A: 14.6%, B: 12.4%, C: 9.9%, p < 0.0001; (mosaic and aneuploid) A: 21.3%, B: 22.9%, C: 18.9%, p < 0.0001; (Total mosaicism) A: 35.9%, B: 35.3%, C: 28.8%, p < 0.0001]. The significantly higher frequency of aneuploidy was on the shorter chromosome (< 90 Mb), and that of mosaicism was on the longer chromosomes (> 100 Mb). The length association did not reach significance in the patients with advanced age (≥ 36 years), and of the chromosome-specific mosaicism rate, the highest prevalence was on chromosome 14 (5.8%), 1 (5.7%), and 9 (5.6%). Although the length association was observed via group comparison, there may be affecting mechanisms other than chromosomes length. Eventually, twenty patients with mosaic embryo cryotransfers resulted in six live births. No significant correlation was observed between the transfer outcomes and chromosome length; however, the analysis was limited by small sample size.
The release of corifollitropin alfa simplifies daily injections of short-acting recombinant follicular stimulating hormone (rFSH), and its widely-used protocol involves short-acting gonadotropins supplements and a fixed GnRH antagonist regimen, largely based on follicle size. In this study, the feasibility of corifollitropin alfa without routine pituitary suppression was evaluated. A total of 288 patients were stimulated by corifollitropin alfa on cycle day 3 following with routine serum hormone monitoring and follicle scanning every other day after 5 days of initial stimulation, and a GnRH antagonist (0.25 mg) was only used prophylactically when the luteinizing hormone (LH) was ≧ 6 IU/L (over half of the definitive LH surge). The incidence of premature LH surge (≧ 10 IU/L) was 2.4% (7/288) before the timely injection of a single GnRH antagonist, and the elevated LH level was dropped down from 11.9 IU/L to 2.2 IU/L after the suppression. Two hundred fifty-one patients did not need any antagonist (87.2% [251/288]) throughout the whole stimulation. No adverse effects were observed regarding oocyte competency (fertilization rate: 78%; blastocyst formation rate: 64%). The live birth rate per OPU cycle after the first cryotransfer was 56.3% (161/286), and the cumulative live birth rate per OPU cycle after cyrotransfers was 69.6% (199/286). Of patients who did and did not receive GnRH antagonist during stimulation, no significant difference existed in the cumulative live birth rates (78.4% vs. 68.3%, p = 0.25). The results demonstrated that the routine GnRH antagonist administration is not required in the corifollitropin-alfa cycles using a flexible and hormone-depended antagonist regimen, while the clinical outcome is not compromised. This finding reveals that the use of a GnRH antagonist only occasionally may be needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.