In this work we developed a one-step process for synthesizing carboxylic-functionalized carbon nanofibers (CNFs)-encapsulated Ni magnetic nanoparticles (Ni@CNFs) that exhibit an excellent magnetic response and a large content of hydrophilic carboxylate groups with a negative charge (RCOO(-)) on the carbon surface. The carbon-encapsulated magnetic Ni nanoparticles could be rapidly separated from water, and they showed high efficiency for adsorption of the antibiotic sulfamethoxazole (SMX) in aqueous solution. The adsorption of SMX on Ni@CNFs as a function of pH was investigated, and the greatest adsorption occurred at pH 7.0. The adsorption isotherms for SMX on Ni@CNFs depended on different pH values. A Monte Carlo simulation was used to probe the relationship between molecular conformation and π-π interaction. The high adsorption of SMX on Ni@CNFs at pH 7.0 could be ascribed to deprotonated SMX being easily converted to a planar-like conformation, thereby resulting in the formation of π rings that were approximately parallel to the graphite surface and that enhanced strong π-π interaction. Electrostatic and π-π interactions both contributed to deprotonated SMX adsorption at pH 7.0, and they influenced the adsorption isotherm toward the Freundlich model. However, in weakly acidic environments (pH 2.0 and 4.0), the electrostatic interaction alone could induce an adsorption pattern that was similar to the Langmuir model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.