Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in exon 1 of the Huntingtin (Htt) gene. We show herein that in an HD transgenic mouse model (R6/2), daily administration of CGS21680 (CGS), an A 2A adenosine receptor (A 2A -R)-selective agonist, delayed the progressive deterioration of motor performance and prevented a reduction in brain weight. 3D-lMRI analysis revealed that CGS reversed the enlarged ventricle-to-brain ratio of R6/2 mice, with particular improvements in the left and right ventricles. 1 H-MRS showed that CGS significantly reduced the increased choline levels in the striatum. Immunohistochemical analyses further demonstrated that CGS reduced the size of ubiquitin-positive neuronal intranuclear inclusions (NIIs) in the striatum of R6/2 mice and ameliorated mutant Htt aggregation in a striatal progenitor cell line overexpressing mutant Htt with expanded polyQ. Moreover, chronic CGS treatment normalized the elevated blood glucose levels and reduced the overactivation of a major metabolic sensor [5¢AMP-activated protein kinase (AMPK)] in the striatum of R6/2 mice. Since AMPK is a master switch for energy metabolism, modulation of energy dysfunction caused by the mutant Htt might contribute to the beneficial effects of CGS. Collectively, CGS is a potential drug candidate for the treatment of HD.
Huntington's disease (HD) is a hereditary neurological disease caused by expended CAG repeats in the HD gene, which codes for a protein called Huntingtin (Htt). The resultant mutant Huntingtin (mHtt) forms aggregates in neurons and causes neuronal dysfunction. In astrocytes, the largest population of brain cells, mHtt also exists. We report herein that astrocyte-conditioned medium (ACM) collected from astrocytes of R6/2 mice (a mouse model of HD) caused primary cortical neurons to grow less-mature neurites, migrate more slowly, and exhibit lower calcium influx after depolarization than those maintained in wild-type (WT) ACM. Using a cytokine antibody array and ELISA assays, we demonstrated that the amount of a chemokine [chemokine (C-C motif) ligand 5 (CCL5)/regulated on activation normal T cell expressed and secreted (RANTES)] released by R6/2 astrocytes was much less than that by WT astrocytes. When cortical neurons were treated with the indicated ACM, supplementation with recombinant CCL5/RANTES ameliorated the neuronal deficiency caused by HD-ACM, whereas removing CCL5/RANTES from WT-ACM using an anti-CCL5/RANTES antibody mimicked the effects evoked by HD-ACM. Quantitative PCR and promoter analyses demonstrated that mHtt hindered the activation of the CCL5/RANTES promoter by reducing the availability of nuclear factor B-p65 and, hence, reduced the transcript level of CCL5/RANTES. Moreover, ELISA assays and immunocytochemical staining revealed that mHtt retained the residual CCL5/RANTES inside R6/2 astrocytes. In line with the above findings, elevated cytosolic CCL5/RANTES levels were also observed in the brains of two mouse models of HD [R6/2 and Hdh (CAG)150 ] and human HD patients. These findings suggest that mHtt hinders one major trophic function of astrocytes which might contribute to the neuronal dysfunction of HD.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt) gene. The resultant mutant Htt protein (mHtt) forms aggregates in the brain and several peripheral tissues (e.g. the liver) and causes devastating neuronal degeneration. Metabolic defects resulting from Htt aggregates in peripheral tissues also contribute to HD pathogenesis. Simultaneous improvement of defects in both the CNS and peripheral tissues is thus the most effective therapeutic strategy and is highly desirable. We earlier showed that an agonist of the A(2A) adenosine receptor (A(2A) receptor), CGS21680 (CGS), attenuates neuronal symptoms of HD. We found herein that the A(2A) receptor also exists in the liver, and that CGS ameliorated the urea cycle deficiency by reducing mHtt aggregates in the liver. By suppressing aggregate formation, CGS slowed the hijacking of a crucial transcription factor (HSF1) and two protein chaperons (Hsp27 and Hsp70) into hepatic Htt aggregates. Moreover, the abnormally high levels of high-molecular-mass ubiquitin conjugates in the liver of an HD mouse model (R6/2) were also ameliorated by CGS. The protective effect of CGS against mHtt-induced aggregate formation was reproduced in two cells lines and was prevented by an antagonist of the A(2A) receptor and a protein kinase A (PKA) inhibitor. Most importantly, the mHtt-induced suppression of proteasome activity was also normalized by CGS through PKA. Our findings reveal a novel therapeutic pathway of A(2A) receptors in HD and further strengthen the concept that the A(2A) receptor can be a drug target in treating HD.
We isolated and characterized a 4.8-kb 5' flanking region of the rat A2A adenosine receptor (A2A-R) gene in the present study. Promoter activity was observed with this DNA fragment in PC12 cells and C6 cells which contain endogenous A2A-Rs. A fusion fragment consisting of the 4.8-kb promoter-proximal DNA fragment of the A2A-R gene, and the coding region of lacZ was utilized to produce mice harbouring the fusion gene. In three independent founder lines, proteins and transcripts of the transgene were found in many areas of the central nervous system (CNS), but not in three peripheral tissues examined. Double immunohistochemical analyses revealed that the transgene was coexpressed with endogenous A2A-R and proper neuronal markers in the brain. Specifically, the transgene in the striatum was found in the enkephalin-containing GABAergic neurons and in the cholinergic neurons as was found for the endogenous A2A-R. However, a selectively enriched striatal expression of the transgene was not found as was observed for the endogenous A2A-R. Collectively, the 4.8-kb promoter-proximal DNA fragment of the rat A2A-R gene contains important element(s) to direct its expression in the CNS where functional A2A-R are found, but were not sufficient to confer the highly concentrated expression of the striatal A2A-R. Furthermore, expressions of A2A-R and the transgene were found in both neurons and astrocytes, suggesting that adenosine might mediate its function through A2A-R in both cell types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.