The TensorTest2D package provides the means to fit generalized linear models on secondorder tensor type data. Functions within this package can be used for parameter estimation (e.g., estimating regression coefficients and their standard deviations) and hypothesis testing. We use two examples to illustrate the utility of our package in analyzing data from different disciplines. In the first example, a tensor regression model is used to study the effect of multi-omics predictors on a continuous outcome variable which is associated with drug sensitivity. In the second example, we draw a subset of the MNIST handwritten images and fit to them a logistic tensor regression model. A significance test characterizes the image pattern that tells the difference between two handwritten digits. We also provide a function to visualize the areas as effective classifiers based on a tensor regression model. The visualization tool can also be used together with other variable selection techniques, such as the LASSO, to inform the selection results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.