This Communication describes a facile route to the preparation of ultrathin gold nanowires using linear chains formed from [(oleylamine)AuCl] complex via aurophilic interaction. The linear chains, with AuI...AuI bonds as the backbone and surrounded by oleylamines, can group together to form bundles of polymeric strands. When the AuI was reduced to Au0 by reacting with Ag nanoparticles in hexane, the polymeric strands functioned as both the source of Au and the template to mediate the nucleation and growth of Au nanowires. Using this method, we were able to produce Au nanowires with an average diameter of approximately 1.8 nm and an aspect ratio of >1000 in high yields (approximately 70%).
This article presents a mechanistic study on the galvanic replacement reaction between 11-and 14-nm multiply twinned particles (MTPs) of Ag and HAuCl 4 in chloroform. We monitored both morphological and spectral changes as the molar ratio of HAuCl 4 to Ag was increased. The details of reaction were different from previous observations on single-crystal Ag nanocubes and cubooctahedrons. Because Au and Ag form alloys rapidly within small MTPs rich in vacancy and grain boundary defects, a complete Au shell did not form on the surface of each individual Ag template. Instead, the replacement reaction resulted in the formation of alloy nanorings and nanocages from Ag MTPs of decahedral or icosahedral shape. For the nanorings and nanocages derived from 11-nm Ag MTPs, the surface plasmon resonance (SPR) peak can be continuously shifted from 400 to 616 nm. When the size of Ag MTPs was increased to 14 nm, the SPR peak can be further shifted to 740 nm, a wavelength sought by biomedical applications. We have also investigated the effects of capping ligands and AgCl precipitate on the replacement reaction. While hollow structures were routinely generated from oleylamine-capped Ag MTPs, we obtained very few hollow structures by using a stronger capping ligand such as oleic acid or tri-n-octylphosphine oxide (TOPO). Addition of extra oleylamine was found to be critical to the formation of well-controlled, uniform hollow structures free of AgCl contamination thanks to the formation of a soluble complex between AgCl and oleylamine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.