BackgroundAlthough conventional two-dimensional (2D) methods for orthognathic surgery planning are still popular, the use of three-dimensional (3D) simulation is steadily increasing. In facial asymmetry cases such as in cleft lip/palate patients, the additional information can dramatically improve planning accuracy and outcome. The purpose of this study is to investigate which parameters are changed most frequently in transferring a traditional 2D plan to 3D simulation, and what planning parameters can be better adjusted by this method.Patients and MethodsThis prospective study enrolled 30 consecutive patients with cleft lip and/or cleft palate (mean age 18.6±2.9 years, range 15 to 32 years). All patients received two-jaw single-splint orthognathic surgery. 2D orthodontic surgery plans were transferred into a 3D setting. Severe bony collisions in the ramus area after 2D plan transfer were noted. The position of the maxillo-mandibular complex was evaluated and eventually adjusted. Position changes of roll, midline, pitch, yaw, genioplasty and their frequency within the patient group were recorded as an alternation of the initial 2D plan. Patients were divided in groups of no change from the original 2D plan and changes in one, two, three and four of the aforementioned parameters as well as subgroups of unilateral, bilateral cleft lip/palate and isolated cleft palate cases. Postoperative OQLQ scores were obtained for 20 patients who finished orthodontic treatment.Results83.3% of 2D plans were modified, mostly concerning yaw (63.3%) and midline (36.7%) adjustments. Yaw adjustments had the highest mean values in total and in all subgroups. Severe bony collisions as a result of 2D planning were seen in 46.7% of patients. Possible asymmetry was regularly foreseen and corrected in the 3D simulation.ConclusionBased on our findings, 3D simulation renders important information for accurate planning in complex cleft lip/palate cases involving facial asymmetry that is regularly missed in conventional 2D planning.
Titanium dioxide (TiO2) has been developed and applied extensively in the form of coatings, in particular for its unique properties such as non-toxicity, high photocatalytic activity, and strong self-cleaning ability. These coatings, which can be prepared via various processes, have not yet been proved to be antimicrobial. This research involves an arc ion plating method to produce TiO2 film on medical grade AISI 304 stainless steel. Antimicrobial efficacy of the deposits is expected due to the photocatalysis action of the anatase phase presented in the deposit. The performance of the coating is evaluated by a JIS Z2801:2000 industrial standard. Experimental results show that TiO2 film mainly consisting of anatase structure can be prepared with a high growth rate of 5 microm/h. Antimicrobial activity (R) of the deposited TiO2 film against Staphylococcus aureus and Escherichia coli was 3.0 and 2.5, respectively, far beyond the value designated in JIS standard. This provides an effective antimicrobial surface coating method for medical implements thereby reducing the risk of hospital-acquired infections.
Traditional planning method for orthognathic surgery has limitations of cephalometric analysis, especially for patients with asymmetry. The aim of this study was to assess surgical plan modification after 3-demensional (3D) simulation. The procedures were to perform traditional surgical planning, construction of 3D model for the initial surgical plan (P1), 3D model of altered surgical plan after simulation (P2), comparison between P1 and P2 models, surgical execution, and postoperative validation using superimposition and root-mean-square difference (RMSD) between postoperative 3D image and P2 simulation model. Surgical plan was modified after 3D simulation in 93% of the cases. Absolute linear changes of landmarks in mediolateral direction (x-axis) were significant and between 1.11 to 1.62 mm. The pitch, yaw, and roll rotation as well as ramus inclination correction also showed significant changes after the 3D planning. Yaw rotation of the maxillomandibular complex (1.88 ± 0.32°) and change of ramus inclination (3.37 ± 3.21°) were most frequently performed for correction of the facial asymmetry. Errors between the postsurgical image and 3D simulation were acceptable, with RMSD 0.63 ± 0.25 mm for the maxilla and 0.85 ± 0.41 mm for the mandible. The information from this study could be used to augment the clinical planning and surgical execution when a conventional approach is applied.
By incorporating three-dimensional (3D) imaging and computer-aided design and manufacturing techniques, 3D computer-assisted technology has been applied widely to provide accurate guidance for assessment and treatment planning in clinical practice. This technology has recently been used in orthognathic surgery to improve surgical planning and outcome. The modality will gradually become popular. This study reviewed the literature concerning the use of computer-assisted techniques in orthognathic surgery including surgical planning, simulation, intraoperative translation of the virtual surgery, and postoperative evaluation. A Medline, PubMed, ProQuest, and ScienceDirect search was performed to find relevant articles with regard to 3D computer-assisted orthognathic surgery in the past 10 years. A total of 460 articles were revealed, out of which 174 were publications addressed the topic of this study. The purpose of this article is to present an overview of the state-of-art methods for 3D computer-assisted technology in orthognathic surgery. From the review we can conclude that the use of computer-assisted technique in orthognathic surgery provides the benefit of optimal functional and aesthetic results, patient satisfaction, precise translation of the treatment plan, and facilitating intraoperative manipulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.