Camera, inertial measurement unit (IMU), and ultra-wideband (UWB) sensors are commonplace solutions to unmanned aerial vehicle (UAV) localization problems. The performance of a localization system can be improved by integrating observations from different sensors. In this paper, we propose a learning-based UAV localization method using the fusion of vision, IMU, and UWB sensors. Our model consists of visual-inertial (VI) and UWB branches. We combine the estimation results of both branches to predict global poses. To evaluate our method, we augment a public VI dataset with UWB simulations and conduct a real-world experiment. The experimental results show that our method provides more robust and accurate results than VI/UWB-only localization. Our codes and data are available at https://imlabntu.github.io/VIUNet/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.