In this paper, we are concerned with the temperature effect on vibrational relaxation and the vibrational energy transfer from the vibrationally excited donor to the acceptor. For the temperature effect, we present numerical results to show the temperature dependence of the rate constant of vibrational relaxation and to discuss the validity of the rate constants obtained from the use of the weak coupling approximation and the strong coupling approximation. It is shown that although the temperature effect is extremely large over the temperature range T=0 to T=ϑE, the Einstein temperature of the medium, for the temperature range T=0 to T=0.3 ϑE, the rate constant varies slowly with temperature. For the vibrational energy transfer, we derive the master equation to describe the time dependent behavior of the excited donor, and the expression for the rate constant of vibrational energy transfer. The master equation is solved to study the temporal behavior of the excited donor as a function of the acceptor concentration. Numerical results are presented to demonstrate the theoretical results.
The interpenetration of porous coordination polymers is an appealing phenomenon; this Frontier article highlights hetero-IPCPs according to the structural features of individual networks involving the framework topology and chemical composition.
The increasing volume and complexity of waste associated with the modern economy poses a serious risk to ecosystems and human health. However, the remanufacturing and recycling of waste into usable products can lead to substantial resource savings. In the present study, clam shell waste was first transformed into pure and well-crystallized single-phase white light-emitting phosphor Ca9Gd(PO4)7:Eu2+,Mn2+ materials. The phosphor Ca9Gd(PO4)7:Eu2+,Mn2+ materials were synthesized by the solid-state reaction method and the carbothermic reduction process, and then characterized and analyzed by means of X-ray diffraction (XRD) and photoluminescence (PL) measurements. The structural and luminescent properties of the phosphors were investigated as well. The PL and quantum efficiency measurements showed that the luminescence properties of clam shell-based phosphors were comparable to that of the chemically derived phosphors. Moreover, white light-emitting diodes were fabricated through the integration of 380 nm chips and single-phase white light-emitting phosphors (Ca0.979Eu0.006Mn0.015)9Gd(PO4)7 into a single package of a white light emitting diode (WLED) emitting a neutral white light of 5298 K with color coordinates of (0.337, 0.344).
In this study, we introduced dual-targeting folic acid (FA) and hyaluronic acid (HA) modified on the surface of rice husk mesoporous silica nanoparticles (rMSNs). Then use the triple combination therapy of anti-cancer drugs, PDT, and PTT to achieve good treatment efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.