Background: To evaluate dosimetric differences of salvage irradiations using two commercially available volumetric modulated arc therapy (VMAT) stereotactic body radiation therapy (SBRT) techniques: RapidArc (RA) and HyperArc (HA), for recurrent nasopharyngeal carcinoma (NPC) after initial radiation therapy. Methods: Ten patients with recurrent NPC status previously treated with radiation therapy were considered suitable candidates for salvage SBRT using VMAT approach. Two separate treatment plans were created with HA and RA techniques for each case, with dosimetric outcomes compared with respect to tumor target coverage and organs-atrisk (OARs) sparing. Furthermore, the cumulative radiobiological effects to the relevant OARs from the original radiotherapy to the respective salvage SBRT plans were analyzed in terms of biologically effective dose (BED). Results: Treatment with HA exhibited similar target dose coverage as with RA, while delivering a higher mean dose to the targets. Using RA technique, the mean maximal doses to optic apparatus and the mean brain dose were reduced by 1 to 1.5 Gy, comparing to HA technique. The conformity index, gradient radius, and intermediate dose spillage in HA plans were significantly better than those in RA. With HA technique, the volume of brain receiving 12 Gy or more was reduced by 44%, comparing to RA technique. The cumulative BEDs to spinal cord and optic apparatus with RA technique were 1 to 2 Gy 3 less than those with HA. HA technique significantly reduced the volume within body that received more than 100 Gy. Conclusions: With better dose distribution than RA while maintaining sufficient target dose coverage, HA represents an attractive salvage SBRT technique for recurrent NPC.
To evaluate the potential benefit of HyperArc (HA) fractionated stereotactic radiotherapy (FSRT) for the benign brain lesion. Sixteen patients with a single deep-seated, centrally located benign brain lesion treated by CyberKnife (CK, G4 cone-based model) were enrolled. Treatment plans for HA with two different optimization algorithms (SRS NTO and ALDO) and coplanar RapidArc (RA) were generated for each patient to meet the corresponding treatment plan criteria. These four FSRT treatment plans were divided into two groups—the homogeneous delivery group (HA-SRS NTO and coplanar RA) and the inhomogeneous delivery group (HA-ALDO and cone-based CK)—to compare for dosimetric outcomes. For homogeneous delivery, the brain V5, V12, and V24 and the mean brainstem dose were significantly lower with the HA-SRS NTO plans than with the coplanar RA plans. The conformity index, high and intermediate dose spillage, and gradient radius were significantly better with the HA-SRS NTO plans than with the coplanar RA plans. For inhomogeneous delivery, the HA-ALDO exhibited superior PTV coverage levels to the cone-based CK plans. Almost all the doses delivered to organs at risk and dose distribution metrics were significantly better with the HA-ALDO plans than with the cone-based CK plans. Good dosimetric distribution makes HA an attractive FSRT technique for the treatment of benign brain lesions.
Background: Whole pelvic radiotherapy (WPRT) with stereotactic body radiotherapy (SBRT) boost has been shown to be effective in patients with high-risk prostate cancer (PC). However, no study has directly compared the efficacy of WPRT with SBRT boost with that of conventionally fractionated radiotherapy (CFRT). We compared the clinical outcomes between CFRT and WPRT with SBRT boost in patients with high or very high-risk PC (National Comprehensive Cancer Network definition). Methods: In total, 132 patients treated with CFRT and 121 patients treated with WPRT followed by SBRT boost were retrospectively analyzed. For the CFRT group, the prescribed dose range was 74-79.2 Gray (Gy) administered at 1.8-2 Gy per fraction. For WPRT with SBRT boost, the prescribed doses were 45 Gy administered in 25 fractions to the whole pelvis followed by 21 Gy boost (3 fractions of 7 Gy each) to prostate and seminal vesicles. The overall survival (OS) and biochemical failure (Phoenix definition) free survival (bFFS) were assessed by using the Kaplan-Meier method or the Cox proportional hazards regression model. The gastrointestinal (GI) and genitourinary (GU) tract toxicity were assessed using the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) v3.0. Results: The estimated 4-years overall survival in the CFRT and WPRT with SBRT boost groups was 91.6 and 97.7%, respectively (P = 0.18). The estimated 4-years biochemical failure-free survival in the CFRT and WPRT with SBRT boost groups was 89.1 and 93.9%, respectively (P = 0.41). No acute grade 3 or higher GI and GU toxicity was observed in both groups. Late grade 3 GI and GU toxicity occurred in 2.3 and 2.3% in the CFRT group, and in 1.7 and 0.8% in the WPRT with SBRT boost group, respectively. There was no significant between-group difference with respect to acute or late toxicity. Wang et al. SBRT Boost for Prostate Cancer Conclusions: In patients with high or very high-risk localized PC, compared with CFRT, WPRT with SBRT boost resulted in similar biochemical-free and overall survival rate with minimal toxicity. WPRT with SBRT boost is a feasible option for patients with high or very high-risk PC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.