The functional and structural significance of the C-terminal region of Thermoanaerobacter ethanolicus 39E amylopullulanase (TetApu) was explored using C-terminal truncation mutagenesis. Comparative studies between the engineered full-length (TetApuM955) and its truncated mutant (TetApuR855) included initial rate kinetics, fluorescence and CD spectrometric properties, substrate-binding and hydrolysis abilities, thermostability, and thermodenaturation kinetics. Kinetic analyses revealed that the overall catalytic efficiency, k (cat)/K (m), was slightly decreased for the truncated enzymes toward the soluble starch or pullulan substrate. Changes to the substrate affinity, K (m), and turnover rate, k (cat), varied in different directions for both types of substrates between TetApuM955 and TetApuR855. TetApuR855 exhibited a higher thermostability than TetApuM955, and retained similar substrate-binding ability and hydrolyzing efficiency against the raw starch substrate as TetApuM955 did. Fluorescence spectroscopy indicated that TetApuR855 retained an active folding conformation similar to TetApuM955. A CD-melting unfolding study was able to distinguish between TetApuM955 and TetApuR855 by the higher apparent transition temperature in TetApuR855. These results indicate that up to 100 amino acid residues, including most of the C-terminal fibronectin typeIII (FnIII) motif of TetApuM955, could be further removed without causing a seriously aberrant change in structure and a dramatic decrease in soluble starch and pullulan hydrolysis.
Chitinases have been classified into family 18 and 19 glycohydrolases based on their hydrolytic mechanisms and the amino acid sequence similarity of their catalytic domains [1]. The catalytic domains of family 18 chitinases are characterized as having (b ⁄ a) 8 barrel folds [2][3][4][5][6], whereas those of family 19 chitinases have a high a-helical content and a structure similar to those found in chitosanases and lysozymes [7,8] The functional and structural significance of the C-terminal region of Bacillus licheniformis chitinase was explored using C-terminal truncation mutagenesis. Comparative studies between full-length and truncated mutant molecules included initial rate kinetics, fluorescence and CD spectrometric properties, substrate binding and hydrolysis abilities, thermostability, and thermodenaturation kinetics. Kinetic analyses revealed that the overall catalytic efficiency, k cat ⁄ K m , was slightly increased for the truncated enzymes toward the soluble 4-methylumbelliferyl-N-N¢-diacetyl chitobiose or 4-methylumbelliferyl-N-N¢¢-N¢¢¢-triacetyl chitotriose or insoluble a-chitin substrate. By contrast, changes to substrate affinity, K m , and turnover rate, k cat , varied considerably for both types of chitin substrates between the full-length and truncated enzymes. Both truncated enzymes exhibited significantly higher thermostabilities than the full-length enzyme. The truncated mutants retained similar substrate-binding specificities and abilities against the insoluble substrate but only had approximately 75% of the hydrolyzing efficiency of the full-length chitinase molecule. Fluorescence spectroscopy indicated that both C-terminal deletion mutants retained an active folding conformation similar to the full-length enzyme. However, a CD melting unfolding study was able to distinguish between the full-length and truncated mutant molecules by the two phases of apparent transition temperatures in the mutants. These results indicate that up to 145 amino acid residues, including the putative C-terminal chitin-binding region and the fibronectin (III) motif of B. licheniformis chitinase, could be removed without causing a seriously aberrant change in structure and a dramatic decrease in insoluble chitin hydrolysis. The results of the present study provide evidence demonstrating that the binding and hydrolyzing of insoluble chitin substrate for B. licheniformis chitinase was not dependent solely on the putative C-terminal chitin-binding region and the fibronectin (III) motif.
A chitinase (VpChiA) and its C-terminal truncated G589 mutant (VpChiAG589) of Vibrio parahaemolyticus were cloned by polymerase chain reaction (PCR) techniques. To study the role of the C-terminal 30 amino acids of VpChiA in the enzymatic hydrolysis of chitin, both the recombinant VpChiA and VpChiAG589 encoded in 1,881 and 1,791 bp DNA fragments, respectively, were expressed in Escherichia coli using the pET-20b(+) expression system. The His-Tag affinity purified VpChiA and VpChiAG589 enzymes had a calculated molecular mass of 65,713 and 62,723 Da, respectively. The results of biochemical characterization including kinetic parameters, spectroscopy of fluorescence and circular dichroism, chitin-binding and hydrolysis, and thermostability, both VpChiA and VpChiAG589, had very similar physicochemical properties such as the optimum pH (6), temperature (40 degrees C), and kinetic parameters of Km and kcat against the 4MU-(GlcNAc)(2) or 4MU-(GlcNAc)(3) soluble substrates. The significant increase of thermostability and the drastic decrease of the hydrolyzing ability of VpChiAG589 toward the insoluble alpha-chitin substrate suggested that a new role could be played by the C-terminal 30 amino acids.
An esterase from rice ( Oryza sativa ) bran was identified on two-dimensional gel using 4-methylumbelliferyl butyrate as a substrate. The esterase cDNA (870 bp) encoded a 289 amino acid protein (designated OsEST-b) and was expressed in Escherichia coli . The molecular weight of recombinant OsEST-b (rOsEST-b) was 27 kDa, as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemical characterization demonstrated that rOsEST-b was active over a broad temperature range (optimum at 60 °C) and preferred alkaline conditions (optimum at pH 9.0). The rOsEST-b showed maximum activity toward p-nitrophenyl butyrate (C(4)) among various p-nitrophenyl esters (C(4)-C(18)), indicating that rOsEST-b is an esterase for short-chain fatty acids. The kinetic parameters under optimal conditions were K(m) = 27.03 μM, k(cat) = 49 s(-1), and k(cat)/K(m) = 1.81 s(-1) μM(-1). The activity of rOsEST-b was not influenced by ethylenediaminetetraacetic acid, suggesting that it is not a metalloenzyme. The amino acid sequence analysis revealed that OsEST-b had a conserved pentapeptide esterase/lipase motif but that the essential active site serine (GXSXG) was replaced by cysteine (C). These results suggest that OsEST-b is distinct from traditional esterases/lipases and is a novel lipolytic enzyme in rice bran.
Glutaredoxin (Grx) is a thiol/disulfide oxidoreductase that maintains the cellular thiol/disulfide ratio. A 321 bp cDNA fragment encoding a putative Grx (named CsT-89Grx) was cloned from heat-tolerant Chlorella sorokiniana T-89 and expressed in an Escherichia coli system. The sequence analysis of CsT-89Grx and site-directed mutations showed that the putative active site within the CPYC motif belonged to the dithiol superfamily. The biochemical property analyses showed that the optimal pH and temperature of CsT-89Grx are pH 8.5 and 50 °C, respectively. The activity of CsT-89Grx showed high thermal stability (retained 70% activity at 80 °C for 30 min) and broad pH stability (retained over 70% activity for 1 h) ranging from pH 3 to 11. The kinetic parameter kcat/Km was 20,982 min(-1) mM(-1), which suggested that CsT-89Grx exhibited the highest catalytic efficiency in reducing the disulfide bond among all the Grx reported in the related literature and is therefore potentially useful for industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.