This paper investigates problems associated with the valuation of callable American volatility put options. Our approach involves modeling volatility dynamics as a mean-reverting 3/2 volatility process. We first propose a pricing formula for the perpetual American knock-out put. Under the given conditions, the value of perpetual callable American volatility put options is discussed.
The theory of approximate solution lacks development in the area of nonlinear -difference equations. One of the difficulties in developing a theory of series solutions for the homogeneous equations on time scales is that formulas for multiplication of two -polynomials are not easily found. In this paper, the formula for the multiplication of two -polynomials is presented. By applying the obtained results, we extend the use of the variational iteration method to nonlinear -difference equations. The numerical results reveal that the proposed method is very effective and can be applied to other nonlinear -difference equations.
a b s t r a c tIn this paper, we provide a new modification of the variational iteration method (MVIM) for solving van der Pol equations. The modification couples the classical variational iteration method with He's polynomials, where the He's polynomials are applied to the approximate solution and the initial condition to eliminate secular terms. For the large e, the numerical results demonstrate that the modification method get an accurate approximate period than the other presented methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.