TDE-Tei index exerts a correlation both with accepted indices of LV systolic and diastolic function acquired by cardiac catheterization. Hence, TDE-Tei index is a simple and feasible indicator in assessing overall LV function.
This study investigated the effect and mechanism of pre-germinated brown rice (PGBR) prevented hyperglycemia in C57BL/6J mice fed high-fat-diet (HFD). Normal six-week-old mice were randomly divided into three groups. Group 1 was fed standard-regular-diet (SRD) and group 2 was fed HFD for 16 weeks. In group 3, the mice were fed a HFD with its carbohydrate replaced with PGBR for 16 weeks. Comparing the SRD and HFD groups, we found the HFD group had higher blood pressure, higher concentrations of blood glucose and HbA1c. The HFD group had less protein expression of insulin receptor (IR), insulin receptor substrate-1 (IRS-1), phosphatidylinositol-3-kinase (PI3K), glucose transporter-4 (GLUT-4) and glucokinase (GCK) and greater expression of glucogen synthase kinase (GSK) in skeletal muscle. The HFD group also had less expression of IR, serine/threonine kinase PI3K-linked protein kinase B (Akt/PKB), AMP-activated protein kinase (AMPK), GCK and peroxisome proliferator-activated receptor γ (PPARγ) in liver. In the HFD + PGBR group, the PGBR could reverse the disorders of blood pressure, blood glucose, HbA1c and increase insulin concentration. PGBR increased the IR, IRS-1, PI3K, Akt, GLUT-1 and GLUT-4 proteins, and ameliorated AMPK, GCK, GSK and PPARγ proteins. Together, PGBR prevented HFD-induced hyperglycemia through improving insulin levels, insulin receptor, glucose transporters and enhancing glucose metabolism.
BackgroundAreca nut chewing has been reported to be associated with obesity, metabolic syndrome, hypertension, and cardiovascular mortality in previous studies. The aim of this study was to examine whether chewing areca nut increases the risk of coronary artery disease (CAD) in Taiwanese men.MethodsThis study is a hospital-based case-control study. The case patients were male patients diagnosed in Taiwan between 1996 and 2009 as having a positive Treadmill exercise test or a positive finding on the Thallium-201 single-photon emission computed tomography myocardial perfusion imaging. The case patients were further evaluated by coronary angiography to confirm their CAD. Obstructive CAD was defined as a ≥ 50% decrease in the luminal diameter of one major coronary artery. The patients who did not fulfill the above criteria of obstructive CAD were excluded.The potential controls were males who visited the same hospital for health check-ups and had a normal electrocardiogram but no history of ischemic heart disease or CAD during the time period that the case patients were diagnosed. The eligible controls were randomly selected and frequency-matched with the case patients based on age. Multiple logistic regression analyses were used to estimate the odds ratio of areca nut chewing and the risk of obstructive CAD.ResultsA total of 293 obstructive CAD patients and 720 healthy controls, all men, were analyzed. Subjects who chewed areca nut had a 3.5-fold increased risk (95% CI = 2.0-6.2) of having obstructive CAD than those without, after adjusting for other significant covariates. The dose-response relationship of chewing areca nut and the risk of obstructive CAD was also noted. After adjusting for other covariates, the 2-way additive interactions for obstructive CAD risk were also significant between areca nut use and cigarette smoking, hypertension and dyslipidemia.ConclusionsLong-term areca nut chewing was an independent risk factor of obstructive CAD in Taiwanese men. Interactive effects between chewing areca nut and cigarette smoking, hypertension, and dyslipidemia were also observed for CAD risk. Further exploration of their underlying mechanisms is necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.