We explore novel nanometer-scale gaps with different widths in palladium (Pd) thin-film
strips using hydrogen absorption under high-pressure conditions and different
temperatures. Both the experimental measurement and numerical calculation are
conducted to examine the electron conduction properties of the newly proposed surface
conduction electron-emitters (SCEs). It is shown that this novel structure exhibits a high
emission efficiency, so that a low turn-on voltage of 40 V for an SCE with a 30 nm nanogap
is obtained. A calibrated model is adopted to predict the effects of the emitter thickness
and different material work functions on emission current with different width of nanogaps.
It is found that the heightened thickness increases the emission current. However,
it tends to saturate for smaller nanogaps. The decrement of work function is
proportional to the increase in emission current, which is independent of the width of
nanogap.
In Abbe's formulation, source optimization (SO) is often formulated into a linear or quadratic problem, depending on the choice of objective functions. However, the conventional approach for the resist image, involving a sigmoid transformation of the aerial image, results in an objective with a functional form. The applicability of the resist-image objective to SO or simultaneous source and mask optimization (SMO) is therefore limited. In this paper, we present a linear combination of two quadratic line-contour objectives to approximate the resist image effect for fast convergence. The line-contour objectives are based on the aerial image on drawn edges using a constant threshold resist model and that of pixels associated with an intensity minimum for side-lobe suppression. A conjugate gradient method is employed to assure the convergence to the global minimum within the number of iterations less than that of source variables. We further compare the optimized illumination with the proposed line-contour objectives to that with a sigmoid resist-image using a steepest decent method. The results show a 100x speedup with comparable image fidelity and a slightly improved process window for the two cases studied.
The conventional segment-based OPC approach has been applied successfully for many CMOS generations and is currently favored. However, Inverse lithography technology (ILT) is a promising candidate for next-generation optical proximity correction (OPC). Still, there are issues that need to be thoroughly addressed and further optimized. In this work, we propose a model-based pre-OPC flow where the sizing of drawn patterns and placement of surrounding sub-resolution assist features (SRAF) are simultaneously generated in a single iteration using an ILT method. The complex patterns can then be simplified for a conventional OPC solution.
We for the first time explore a novel structure of Pd thin-film emitter fabricated on the substrate with various gaps ranging from 30 nm to 90 nm. With the 3D electromagnetic particle-in-cell (PIC) simulation, we study the conducting mechanism and driving current for the new device with one palladium field emission emitter. Compared with the experimental data, our calibrated simulation predicts a high emission efficiency of the investigated device structure. It is found that the turn-on voltage is about 50V and a very high electron emission current of 0.1 mA is estimated at the anode voltage of 80 V for one emitter. The novel structure of surface conduction electron-emitter (SCE) has the advantages of the simple fabrication and the high emission efficiency. Based upon the numerical procedure, we are currently investigating the emission efficiency for more advanced structures of SCE.
Two different surface conduction electron-emitter (SCE) structures with the nanogap of 90 nm wide fabricated by hydrogen embrittlement (HE) and focused ion beam techniques are simulated for the first time. We employ a threedimensional particle-in-cell method coupling with finitedifference time-domain scheme to simulate the property of electron emission in these SCEs. Our calibrated simulation predicts high emission efficiency of the SCE structure which is fabricated by HE. Compared with the other SCE structure, it is observed that the proposed structure possesses low power consumption at the fixed emission current when the width of nanogap becomes narrower. The current-voltage characteristics including conducting mechanisms are investigated and explained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.