Respiratory motion causes uncertainties in tumor edges on either computed tomography (CT) or positron emission tomography (PET) images and causes misalignment when registering PET and CT images. This phenomenon may cause radiation oncologists to delineate tumor volume inaccurately in radiotherapy treatment planning. The purpose of this study was to analyze radiology applications using interpolated average CT (IACT) as attenuation correction (AC) to diminish the occurrence of this scenario. Thirteen non-small cell lung cancer patients were recruited for the present comparison study. Each patient had full-inspiration, full-expiration CT images and free breathing PET images by an integrated PET/CT scan. IACT for AC in PETIACT was used to reduce the PET/CT misalignment. The standardized uptake value (SUV) correction with a low radiation dose was applied, and its tumor volume delineation was compared to those from HCT/PETHCT. The misalignment between the PETIACT and IACT was reduced when compared to the difference between PETHCT and HCT. The range of tumor motion was from 4 to 17 mm in the patient cohort. For HCT and PETHCT, correction was from 72% to 91%, while for IACT and PETIACT, correction was from 73% to 93% (*p<0.0001). The maximum and minimum differences in SUVmax were 0.18% and 27.27% for PETHCT and PETIACT, respectively. The largest percentage differences in the tumor volumes between HCT/PET and IACT/PET were observed in tumors located in the lowest lobe of the lung. Internal tumor volume defined by functional information using IACT/PETIACT fusion images for lung cancer would reduce the inaccuracy of tumor delineation in radiation therapy planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.