Wireless sensor networks (WSNs) have recently attracted much interest in the research community because of their wide range of applications. An emerging application for WSNs involves their use in healthcare where they are generally termed wireless medical sensor networks. In a hospital, outfitting every patient with tiny, wearable, wireless vital sign sensors would allow doctors, nurses, and other caregivers to continuously monitor the state of their patients. In such a scenario, patients are expected to be treated in reasonable time, so an access control model is needed, which will provide both real-time access to comprehensive medical records and detect unauthorized access to sensitive data. In emergency situations, a doctor or nurse needs to access data immediately. The loss in data availability can result in further decline in the patient's condition or can even lead to death. Therefore, the availability of data is more important than any security concern in emergency situations. To address that research issue for medical data in WSNs, we propose the break-the-glass access control (BTG-AC) model that is a modified and redesigned version of the break-the-glass role-based access control (BTG-RBAC) model to address data availability issue and to detect the security policy violations from both authorized and unauthorized users. Several changes within the access control engine are made in BTG-RBAC in order to make the new BTG-AC to apply and fit in WSNs. This paper presents the detailed design and development of the BTG-AC model based on a healthcare scenario. The evaluation results show that the concepts of BTG, prevention and detection mechanism, and obligation provide more flexible access than other current access control models in WSNs. Additionally, we compare the BTG-AC model with an adaptive access control (AC) model, which has similar properties, for further evaluation. Alongside with the comparison, the advantages and disadvantages of BTG-AC over current WSN access control models are presented.
copyright 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/)Wireless sensor networks (WSNs) have attracted considerable interest in the research community, because of their wide range of applications. However, due to the distributed nature of WSNs and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. Resource constraints in sensor nodes mean that security mechanisms with a large overhead of computation and communication are impractical to use in WSNs; security in sensor networks is, therefore, a challenge. Access control is a critical security service that offers the appropriate access privileges to legitimate users and prevents illegitimate users from unauthorized access. However, access control has not received much attention in the context of WSNs. This paper provides an overview of security threats and attacks, outlines the security requirements and presents a state-of-the-art survey on access control models, including a comparison and evaluation based on their characteristics in WSNs. Potential challenging issues for access control schemes in WSNs are also discussed
Wireless Sensor Networks (WSNs) have recently attracted a lot of attention in the research community because it is easy to deploy them in the physical environment and collect and disseminate environmental data from them. The collected data from sensor nodes can vary based on what kind of application is used for WSNs. Data confidentiality and access control to that collected data are the most challenging issues in WSNs because the users are able to access data from the different location via ad-hoc manner. Access control is one of the critical requirements to prevent unauthorised access from users. The current access control models in information systems cannot be applied straightforwardly because of some limitations namely limited energy, resource and memory, and low computation capability. Based on the requirements of WSNs, we proposed the Break-The-Glass Access Control (BTG-AC) model which is the modified and redesigned version of Break-The-Glass Role-Based Access Control (BTG-RBAC) model. The several changes within the access control engine are made in BTG-RBAC to apply and fit in WSNs. We developed the BTG-AC model in Ponder2 package. Also a medical scenario was developed to evaluate the BTG-AC model for medical data in WSNs. In this paper, detail design, implementation phase, evaluation result and policies evaluation for the BTG-AC model are presented. Based on the evaluation result, the BTG-AC model can be used in WSNs after several modifications have been made under Ponder2 Package
Wireless Sensor Networks (WSNs) have recently attracted a lot of interest in the research community. The security mechanism with large overhead of computation and communication, are infeasible to apply in WSNs due to many constraints such as limited energy, resource and memory, and low computation capability. Current access control models cannot make an effective access decision in many events because access decisions are based on predefined access policies and roles. Sometimes, users may need to access important data urgently but apart from those predefined access policies, other user request will not be granted. An adaptive access control model is proposed aiming to provide a flexible and an effective access decision on user access request at any time. The proposed model is developed in Ponder2 framework with additional extensions to adapt the unexpected events by using privilege overriding and also adjust its decision based on users' behaviour trust value. A medical scenario is used as an example application to develop and evaluate the proposed model in Body Sensor Networks (BSNs) and WSNs. In this paper, detailed design, implementation phase, evaluation result and policies testing for the proposed adaptive access control model are presented. Based on an evaluation result, all the modules in the proposed access control model are cooperated to make an effective access decision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.