She is currently working on domain dynamics, 2D ferroelectrics, and nonvolatile memories based on piezoresponse force microscopy. Ni Zhong received her B.S. degree from Shanghai Institute of Ceramics, Chinese Academy of Sciences, and her Ph.D. from NARA Institute of Science and Technology (NAIST), Japan. In 2012, she joined the Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University as an associate professor. She is currently focusing on ferroelectric thin films/2D ferroelectrics/strongly correlated material and novel devices for next-generation computing systems.
Valley, the energy extrema in the electronic band structure at momentum space, is regarded as a new degree of freedom of electrons, in addition to charge and spin. The studies focused on valley degree of freedom now form an emerging field of condensed-matter physics, i.e., valleytronics, whose development is exactly following that of spintronics, which focuses on the spin degree of freedom. Here, in analogy to half-metals in spintronics where one spin channel is conducting, whereas the other is insulating, we propose the concept of half-valley metal, in which conduction electrons are intrinsically 100% valley polarized, as well as 100% spin polarized even when spin–orbit interactions are considered. Combining first-principle calculations with a two-band k·p model, the physical mechanism to form the half-valley metal is illuminated. Taking the ferrovalley H-FeCl2 monolayer with strong exchange interaction as an example, we find that the strong electron correlation effect can induce the ferrovalley to half-valley-metal transition. Due to the valley-dependent optical selection rules, such a system could be transparent to, e.g., left-circularly polarized light, yet the right-circularly polarized light will be reflected, which can in turn be used as a crucial method to detect the half-valley-metal state. Interestingly, with the increase of the correlation effect, the system becomes insulating again with all valleys following the same optical selection rule. We confirm that in this specific case, the valence bands, which consist of single spin, possess nonzero Chern number and consequently an intrinsic quantum anomalous valley Hall effect emerges. Our findings open an appealing route toward functional 2D materials design of valleytronics.
Coral reef habitat structural complexity influences key ecological processes, ecosystem biodiversity, and resilience. Measuring structural complexity underwater is not trivial and researchers have been searching for accurate and cost-effective methods that can be applied across spatial extents for over 50 years. This study integrated a set of existing multi-view, image-processing algorithms, to accurately compute metrics of structural complexity (e.g., ratio of surface to planar area) underwater solely from images. This framework resulted in accurate, high-speed 3D habitat reconstructions at scales ranging from small corals to reef-scapes (10s km 2 ). Structural complexity was accurately quantified from both contemporary and historical image datasets across three spatial scales: (i) branching coral colony (Acropora spp.); (ii) reef area (400 m 2 ); and (iii) reef transect (2 km). At small scales, our method delivered models with <1 mm error over 90% of the surface area, while the accuracy at transect scale was 85.3%˘6% (CI). Advantages are: no need for an a priori requirement for image size or resolution, no invasive techniques, cost-effectiveness, and utilization of existing imagery taken from off-the-shelf cameras (both monocular or stereo). This remote sensing method can be integrated to reef monitoring and improve our knowledge of key aspects of coral reef dynamics, from reef accretion to habitat provisioning and productivity, by measuring and up-scaling estimates of structural complexity.
Amorphous SiO2 (a-SiO2) thin films are widely used in integrated circuits (ICs) due to their excellent thermal stability and insulation properties. In this paper, the thermal conductivity of a-SiO2 thin film was systematically investigated using non-equilibrium molecular dynamics (NEMD) simulations. In addition to the size effect and the temperature effect for thermal conductivity of a-SiO2 thin films, the effect of defects induced thermal conductivity tuning was also examined. It was found that the thermal conductivity of a-SiO2 thin films is insensitive to the temperature from −55 °C to 150 °C. Nevertheless, in the range of the thickness in this work, the thermal conductivity of the crystalline SiO2 (c-SiO2) thin films conforms to the T−α with the exponent range from −0.12 to −0.37, and the thinner films are less sensitive to temperature. Meanwhile, the thermal conductivity of a-SiO2 with thickness beyond 4.26 nm has no significant size effect, which is consistent with the experimental results. Compared with c-SiO2 thin film, the thermal conductivity of a-SiO2 is less sensitive to defects. Particularly, the effect of spherical void defects on the thermal conductivity of a-SiO2 is followed by Coherent Potential model, which is helpful for the design of low-K material based porous a-SiO2 thin film in microelectronics.
Abstract. Hygroscopicity largely affects environmental and climatic impacts of pollen grains, one important type of primary biological aerosol particles in the troposphere. However, our knowledge of pollen hygroscopicity is rather limited, and the effect of temperature in particular has rarely been explored before. In this work three different techniques, including a vapor sorption analyzer, diffusion reflectance infrared Fourier transform spectroscopy (DRIFTS) and transmission Fourier transform infrared spectroscopy (transmission FTIR) were employed to characterize six anemophilous pollen species and to investigate their hygroscopic properties as a function of relative humidity (RH, up to 95 %) and temperature (5 or 15, 25 and 37 ∘C). Substantial mass increase due to water uptake was observed for all the six pollen species, and at 25 ∘C the relative mass increase at 90 % RH, when compared to that at <1 % RH, ranged from ∼30 % to ∼50 %, varying with pollen species. It was found that the modified κ-Köhler equation can well approximate mass hygroscopic growth of all the six pollen species, and the single hygroscopicity parameter (κ) was determined to be in the range of 0.034±0.001 to 0.061±0.007 at 25 ∘C. In situ DRIFTS measurements suggested that water adsorption by pollen species was mainly contributed to by OH groups of organic compounds they contained, and good correlations were indeed found between hygroscopicity of pollen species and the number of OH groups, as determined using transmission FTIR. An increase in temperature would in general lead to a decrease in hygroscopicity, except for pecan pollen. For example, κ values decreased from 0.073±0.006 at 5 ∘C to 0.061±0.007 at 25 ∘C and to 0.057±0.004 at 37 ∘C for Populus tremuloides pollen, and decreased from 0.060±0.001 at 15 ∘C to 0.054±0.001 at 25 ∘C and 0.050±0.002 at 37 ∘C for paper mulberry pollen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.