Carbon dioxide (CO2) is an important environmental cue for many organisms but is odorless to humans. It remains unclear whether the mammalian olfactory system can detect CO2 at concentrations around the average atmospheric level (0.038%). We demonstrated the expression of carbonic anhydrase type II (CAII), an enzyme that catabolizes CO2, in a subset of mouse olfactory neurons that express guanylyl cyclase D (GC-D+ neurons) and project axons to necklace glomeruli in the olfactory bulb. Exposure to CO2 activated these GC-D+ neurons, and exposure of a mouse to CO2 activated bulbar neurons associated with necklace glomeruli. Behavioral tests revealed CO2 detection thresholds of approximately 0.066%, and this sensitive CO2 detection required CAII activity. We conclude that mice detect CO2 at near-atmospheric concentrations through the olfactory subsystem of GC-D+ neurons.
Atmospheric CO2 is an important environmental cue that regulates several types of animal behavior. In mice, CO 2 responses of the olfactory sensory neurons (OSNs) require the activity of carbonic anhydrase to catalyze the conversion of CO 2 to bicarbonate and the opening of cGMP-sensitive ion channels. However, it remains unknown how the enhancement of bicarbonate levels results in cGMP production. Here, we show that bicarbonate activates cGMP-producing ability of guanylyl cyclase-D (GC-D), a membrane GC exclusively expressed in the CO 2-responsive OSNs, by directly acting on the intracellular cyclase domain of GC-D. Also, the molecular mechanism for GC-D activation is distinct from the commonly believed model of ''release from repression'' for other membrane GCs. Our results contribute to our understanding of the molecular mechanisms of CO 2 sensing and suggest diverse mechanisms of molecular activation among membrane GCs.carbonic anhydrase ͉ CNG channels ͉ necklace glomeruli ͉ transduction
Midbrain dopamine neurons regulate many important behavioral processes and their dysfunctions are associated with several human neuropsychiatric disorders such as Attention Deficit Hyperactivity Disorder (ADHD) and schizophrenia. Here, we report that these neurons in mice selectively express guanylyl cyclase-C (GC-C), a membrane receptor previously thought to be expressed mainly in the intestine. GC-C activation potentiates the excitatory responses mediated by glutamate and acetylcholine receptors via the activity of cGMPdependent protein kinase (PKG). GC-C knockout mice exhibit hyperactivity and attention deficits. Moreover, their behavioral phenotypes are reversed by ADHD therapeutics and a PKG activator. These results indicate important behavioral and physiological functions for the GC-C/PKG signaling pathway within the brain and suggest new therapeutic targets for neuropsychiatric disorders related to the malfunctions of midbrain dopamine neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.