The bacterial type III secretion system, or injectisome, is a syringe shaped nanomachine essential for the virulence of many disease causing Gram-negative bacteria. At the core of the injectisome structure is the needle complex, a continuous channel formed by the highly oligomerized inner and outer membrane hollow rings and a polymerized helical needle filament which spans through and projects into the infected host cell. Here we present the near-atomic resolution structure of a needle complex from the prototypical Salmonella Typhimurium SPI-1 type III secretion system, with local masking protocols allowing for model building and refinement of the major membrane spanning components of the needle complex base in addition to an isolated needle filament. This work provides significant insight into injectisome structure and assembly and importantly captures the molecular basis for substrate induced gating in the giant outer membrane secretin portal family.
Psoriasis is characterized by resistance to infections, which is regulated by antimicrobial proteins. Whether antimicrobial proteins play a pathogenic role in psoriasis remains unclear. In this study, we aimed to elucidate the role of lipocalin-2 (Lcn2), an antimicrobial protein, in the pathogenesis of psoriasis. Our results showed that Lcn2 was highly expressed in the lesional skin of psoriatic patients. The neutralization of Lcn2 alleviated epidermal hyperplasia, inflammation, and especially neutrophil infiltration in an imiquimod-induced psoriasis-like murine model. In vitro, Lcn2 stimulated human neutrophils to produce vital proinflammatory mediators, such as IL-6, IL-8, tumor necrosis factor-α, and IL-1α via a specific receptor, 24p3R, on neutrophils, which consequently activated the downstream extracellular signal-regulated kinase-1/2 and p38-mitogen-activated protein kinase signaling pathways. Moreover, Lcn2-induced neutrophil chemotaxis was concentration dependent and mediated by the extracellular signal-regulated kinase-1/2 and p38-mitogen-activated protein kinase signaling pathways in vitro. Furthermore, we demonstrated that both keratinocytes and neutrophils were the sources of Lcn2 in the lesional skin of psoriatic patients. Taken together, these results suggest that Lcn2 is involved in the pathogenesis of psoriasis by modulating neutrophil function, and that it could serve as a potential target for treating psoriasis.
Curcumin, a selective phosphorylase kinase inhibitor, is a naturally occurring phytochemical present in turmeric. Curcumin has been confirmed to have anti-inflammatory properties in addition to the ability to decrease the expression of pro-inflammatory cytokines in keratinocytes. The interleukin-23 (IL-23)/IL-17A cytokine axis plays a critical role in the pathogenesis of psoriasis. Here, we report that topical use of a curcumin gel formulation strongly inhibited imiquimod (IMQ)-induced psoriasis-like inflammation, the development of which was based on the IL-23/IL-17A axis. IMQ-induced epidermal hyperplasia and inflammation in BALB/c mouse ear was significantly inhibited following curcumin treatment. Real-time PCR showed that mRNA levels of IL-17A, IL-17F, IL-22, IL-1β, IL-6 and TNF-α cytokines were decreased significantly by curcumin in ear skin, an effect similar to that of clobetasol. In addition, we found that curcumin may enhance the proliferation of epidermis γδ T cells but inhibit dermal γδ T cell proliferation. We inferred that curcumin was capable of impacting the IL-23/IL-17A axis by inhibiting IL-1β/IL-6 and then indirectly down-regulating IL-17A/IL-22 production. In conclusion, curcumin can relieve the IMQ-induced psoriasis-like inflammation in a mouse model, similar to the effects of clobetasol. Therefore, we have every reason to expect that curcumin will be used in the treatment of psoriasis in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.