The new severe acute respiratory syndrome coronavirus 2 was initially discovered at the end of 2019 in Wuhan City in China and has caused one of the most serious global public health crises. A collection and analysis of studies related to the association between COVID-19 (coronavirus disease 2019) transmission and meteorological factors, such as humidity, is vital and indispensable for disease prevention and control. A comprehensive literature search using various databases, including Web of Science, PubMed, and Chinese National Knowledge Infrastructure, was systematically performed to identify eligible studies from Dec 2019 to Feb 1, 2021. We also established six criteria to screen the literature to obtain high-quality literature with consistent research purposes. This systematic review included a total of 62 publications. The study period ranged from 1 to 8 months, with 6 papers considering incubation, and the lag effect of climate factors on COVID-19 activity being taken into account in 22 studies. After quality assessment, no study was found to have a high risk of bias, 30 studies were scored as having moderate risks of bias, and 32 studies were classified as having low risks of bias. The certainty of evidence was also graded as being low. When considering the existing scientific evidence, higher temperatures may slow the progression of the COVID-19 epidemic. However, during the course of the epidemic, these climate variables alone could not account for most of the variability. Therefore, countries should focus more on health policies while also taking into account the influence of weather. Supplementary Information The online version contains supplementary material available at 10.1007/s11356-021-15929-5.
This prevalence of coronavirus disease 2019 (COVID-19) has become one of the most serious public health crises. Tree-based machine learning methods, with the advantages of high efficiency, and strong interpretability, have been widely used in predicting diseases. A data-driven interpretable ensemble framework based on tree models was designed to forecast daily new cases of COVID-19 in the USA and to determine the important factors related to COVID-19. Based on a hyperparametric optimization technique, we developed three machine learning algorithms based on decision trees, including random forest (RF), eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM), and three linear ensemble models were used to integrate these outcomes for better prediction accuracy. Finally, the SHapley Additive explanation (SHAP) value was used to obtain the feature importance ranking. Our outcomes demonstrated that, among the three basic machine learners, the prediction accuracy was the following in descending order: LightGBM, XGBoost, and RF. The optimized LAD ensemble was the most precise prediction model that reduced the prediction error of the best base learner (LightGBM) by approximately 3.111%, while vaccination, wearing masks, less mobility, and government interventions had positive effects on the control and prevention of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.