Organic-rich shales were found in the Ordovician to Silurian Wufeng-Longmaxi Formation in northwestern Guizhou province, China, which has high shale gas content revealed by field measurement. Shale gas occurrence, free gas/sorbed gas ratio, and their influencing factors are crucial for shale gas exploitation strategy. Results indicated that the Wufeng-Longmaxi shales are dominated by type I kerogen, with total organic carbon (TOC) and equivalent vitrinite reflectance (eqvRo) of 0.77%–6.98% and 2.37%–2.53%, respectively. The total porosity and permeability are in the range of 1.23%–8.43% and 3 × 10 − 4 – 2.23 × 10 − 1 mD, respectively. FE-SEM observation and correlation analysis show shale porosity is dominated by organic matter (OM) pores, followed by interparticle (interP) pores related to brittle minerals. CH4, derived from oil cracking, is the main component of shale gas, but its proportion is lower than that in Fuling and Weiyuan areas, probably due to the weak preservation condition. Desorption gas and lost gas determined by in situ desorption test are 0.42–1.54 cm3/g and 1.9–7.14 cm3/g, respectively, and Langmuir volume ( V L ) from isothermal adsorption experiment is 1.63–4.78 cm3/g. Shale gas content is positively correlated with micropore volume, mesopore volume and TOC content but negatively correlated with macropore volume and clay mineral content, indicating that methane is preferentially stored in micropores (<2 nm) and mesopores (2–50 nm) related to OMs. By comparing actual total gas content with theoretical gas content, shale gas is considered to exist primarily in sorbed state, and the free gas proportion can increase with increased TOC content, due to that OM pores with larger sizes are also main space for free gas. Combined with the two methods, it can result in accurate calculations of shale gas reserves and free/sorbed gas ratio. Based on this understanding, a model of shale gas occurrence was proposed, which can provide a reference for shale gas exploitation in normal pressure areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.