Travel time estimation for freeways has attracted much attention from researchers and traffic management departments. Because of various uncertain factors, travel time on a freeway is stochastic. To obtain travel time estimates for a freeway accurately, this paper proposes two traffic sensor location models that consider minimizing the error of travel time estimation and maximizing the collected traffic flow. First, a dynamic optimal location model of the mobile sensor is proposed under the assumption that there are no traffic sensors on a freeway. Next, a dynamic optimal combinatorial model of adding mobile sensors taking account of fixed sensors on a freeway is presented. It should be pointed out that the technology of data fusion will be adopted to tackle the collected data from multiple sensors in the second optimization model. Then, a simulated annealing algorithm is established to find the solutions of the proposed two optimization models. Numerical examples demonstrate that dynamic optimization of mobile sensor locations for the estimation of travel times on a freeway is more accurate than the conventional location model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.