Background: Hepatocellular carcinoma(HCC) in China is considered as a familiar malignant tumor with poor prognosis, high metastasis and disease relapse. Telocytes(TCs) have been verified to participate in progresses of tumorigenesis, invasions and migrations by secreting functional proteins and transmitting cell-to-cell information. Extracellular signal-regulared protein kinase(ERK) signal pathway is a vital mechanism driving cell proliferation, metastasis and apoptosis, but whether this molecular signaling mechanism contributes to matrix metalloproteinase-9(MMP) expression of TCs remains unclear. Methods: Telocytes and MMP9 expression in the liver cancer tissues are measured by immunohistochemistry assay, Westen blot assay and RT-PCR technique, meanwhile primary telocytes from liver para-cancer tissues are cultured in vitro. To demonstrate the function of telocytes for hepatocellular carcinoma, the metastatic cancer animal model is established by three typs of liver cancer cell-lines in vivo. Results: In our study, we elucidate that TCs in the para-cancer tissue can promote the metastasis of HCC cells by MMP-9 expression, in vitro and in vivo. PDGF derived from HCC cells has a capacity to activate Ras/ERK signaling pathway of TC as a result of accelerating MMP-9 expression, but it’s no significant for proliferative potential and apoptotic rate of TCs. While tyrosine kinase inhibitors and miR-942-3p suppress MMP-9 expression to make loss functions of TCs. Various mutations of TCs are also tested and single nucleotide polymorphisms of MMP-9 may be the potentially molecular mechanism of increasing protein expression in the invasive process of HCC. Conclusion: Our results demonstrate two potential mechanisms between HCC cells and TCs, suggesting that TC is a novel marker and target on deciphering reasons of cancer metastasis.
Background: Immunotherapy has been proved to be effective for bladder cancer (BLCA). However, the molecular network involved in BLCA tumor immune response remains unclear. This study aims to construct an immune-related ceRNA network and to identify the prognostic value. Methods: Based on The Cancer Genome Atlas (TCGA), we used single-sample gene set enrichment analysis (ssGSEA), weighted gene co-expression network analysis (WGCNA) to determine immune-related mRNA, lncRNA and miRNA. Then least absolute shrinkage, and selection operator (LASSO) and Cox regression were performed to identify the mRNAs with high prognostic value, and accordingly, the risk score was calculated. Internal and external validation were performed both in TCGA and GSE13507 with Kaplan-Meier (KM) survival and Receiver Operating Characteristic (ROC) curve analysis. Using the immune-related mRNA, lncRNA and miRNA, a ceRNA network was established via MiRcode, starBase, miRDB, miRTarBase and TargetScan. Besides, we also explore the relationship between the risk score and immune cell infiltration via CIBERSORT algorithm. Results: 5 mRNAs (PCGF3, FASN, DPYSL2, TGFBI and NTF3) were ultimately identified, and KM survival analysis displayed the 5-mRNA risk signature could predict the prognosis of BLCA with high efficacy both in TCGA (p = 1.006e-13) and GSE13507 (p = 7.759e-04). Using miRNA targeting molecular prediction database, an immune-related ceRNA network, including 5 mRNAs, 24 miRNAs and 86 lncRNAs, was constructed. Memory B cells, activated dendritic cells, and regulatory T cells infiltration into tumors were negatively correlated with risk score, while the infiltration levels of macrophages M0, M1 and M2 were positively correlated with risk score. Conclusion: This study helped to better understand the molecular mechanisms of tumor immune response from the view of ceRNA hypothesis, and provided a novel prognostic signature for bladder cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.