SUMMARY Overnutrition is associated with chronic inflammation in metabolic tissues; however, whether metabolic inflammation compromises the neural regulatory systems and therefore promotes overnutrition-associated diseases remains unexplored. Our results demonstrate that a mediator of metabolic inflammation, IKKβ/NF-κB, normally remains inactive although enriched in the hypothalamic neurons; however, overnutrition atypically activates hypothalamic IKKβ/NF-κB at least through elevated endoplasmic reticulum stress in the hypothalamus. While forced activation of hypothalamic IKKβ/NF-κB interrupts central insulin/leptin signaling and actions, site- or cell-specific suppression of IKKβ either broadly across the brain, or locally within the mediobasal hypothalamus, or specifically in hypothalamic AGRP neurons significantly protects against obesity and glucose intolerance. The involved molecular mechanisms include the control of IKKβ/NF-κB over SOCS3, a core inhibitor of insulin and leptin signaling. In conclusion, the hypothalamic IKKβ/NF-κB program is a general neural mechanism for energy imbalance underlying obesity; suppressing hypothalamic IKKβ/NF-κB represents a new strategy to combat obesity and related diseases.
While deep learning has revolutionized protein structure prediction, almost all experimentally characterized de novo protein designs have been generated using physically based approaches such as Rosetta. Here we describe a deep learning–based protein sequence design method, ProteinMPNN, with outstanding performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a sequence recovery of 52.4%, compared to 32.9% for Rosetta. The amino acid sequence at different positions can be coupled between single or multiple chains, enabling application to a wide range of current protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using X-ray crystallography, cryoEM and functional studies by rescuing previously failed designs, made using Rosetta or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target binding proteins.
Hypothalamic neuropeptides play essential roles in regulating energy and body weight balance. Energy imbalance and obesity have been linked to hypothalamic signaling defects in regulating neuropeptide genes; however, it is unknown whether dysregulation of neuropeptide exocytosis could be critically involved. This study discovered that synaptotagmin-4, an atypical modulator of synaptic exocytosis, is expressed most abundantly in oxytocin neurons of the hypothalamus. Synaptotagmin-4 negatively regulates oxytocin exocytosis, and dietary obesity is associated with increased vesicle binding of synaptotagmin-4 and thus enhanced negative regulation of oxytocin release. Overexpressing synaptotagmin-4 in hypothalamic oxytocin neurons and centrally antagonizing oxytocin in mice are similarly obesogenic. Synaptotagmin-4 inhibition prevents against dietary obesity by normalizing oxytocin release and energy balance under chronic nutritional excess. In conclusion, the negative regulation of synaptotagmin-4 on oxytocin release represents a hypothalamic basis of neuropeptide exocytosis in controlling obesity and related diseases.
Synaptotagmin (syt) 7 is one of three syt isoforms found in all metazoans; it is ubiquitously expressed, yet its function in neurons remains obscure. Here, we resolved Ca2+-dependent and Ca2+-independent synaptic vesicle (SV) replenishment pathways, and found that syt 7 plays a selective and critical role in the Ca2+-dependent pathway. Mutations that disrupt Ca2+-binding to syt 7 abolish this function, suggesting that syt 7 functions as a Ca2+-sensor for replenishment. The Ca2+-binding protein calmodulin (CaM) has also been implicated in SV replenishment, and we found that loss of syt 7 was phenocopied by a CaM antagonist. Moreover, we discovered that syt 7 binds to CaM in a highly specific and Ca2+-dependent manner; this interaction requires intact Ca2+-binding sites within syt 7. Together, these data indicate that a complex of two conserved Ca2+-binding proteins, syt 7 and CaM, serve as a key regulator of SV replenishment in presynaptic nerve terminals.DOI: http://dx.doi.org/10.7554/eLife.01524.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.