Accumulating evidence suggests that oxidant stress alters many functions of the endothelium, including modulation of vasomotor tone. Inactivation of nitric oxide (NO(.)) by superoxide and other reactive oxygen species (ROS) seems to occur in conditions such as hypertension, hypercholesterolemia, diabetes, and cigarette smoking. Loss of NO(.) associated with these traditional risk factors may in part explain why they predispose to atherosclerosis. Among many enzymatic systems that are capable of producing ROS, xanthine oxidase, NADH/NADPH oxidase, and uncoupled endothelial nitric oxide synthase have been extensively studied in vascular cells. As the role of these various enzyme sources of ROS become clear, it will perhaps be possible to use more specific therapies to prevent their production and ultimately correct endothelial dysfunction.
Background
Although metabolic reprogramming is critical in the pathogenesis of heart failure, studies to date have focused principally on fatty acid and glucose metabolism. Contribution of amino acid metabolic regulation in the disease remains understudied.
Methods and Results
Transcriptomic and metabolomic analyses were performed in mouse failing heart induced by pressure-overload. Suppression of branched-chain amino acids (BCAAs) catabolic gene expression along with concomitant tissue accumulation of branched-chain α-keto acids (BCKAs) was identified as a significant signature of metabolic reprogramming in mouse failing hearts, and validated to be shared in human cardiomyopathy hearts. Molecular and genetic evidence identified the transcription factor KLF15 as a key upstream regulator of the BCAA catabolic regulation in the heart. Studies using a genetic mouse model revealed that BCAA catabolic defect promoted heart failure associated with induced oxidative stress and metabolic disturbance in response to mechanical overload. Mechanistically, elevated BCKA directly suppressed respiration and induced superoxide production in isolated mitochondria. Finally, pharmacological enhancement of branched-chain α-keto acid dehydrogenase activity significantly blunted cardiac dysfunction following pressure-overload.
Conclusions
BCAA catabolic defect is a metabolic hallmark of failing heart resulted from KLF15 mediated transcriptional reprogramming. BCAA catabolic defect imposes a previously unappreciated significant contribution to heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.