Quite different meanings are attached by chemists to the words element, atom, orbital, order of orbitals or configurations. This causes conceptual inconsistencies, in particular with respect to the transition-metal elements and their atoms or ions. The different meanings will here be distinguished carefully. They are analyzed on the basis of empirical atomic spectral data and quasi-relativistic density functional calculations. The latter are quite reliable for different average configuration energies of transition-metal atoms. The so-called "configurations of the chemical elements", traditionally displayed in periodic tables, are the dominant configurations of the lowest spin-orbit levels of the free atoms. They are chemically rather irrelevant. In many-electron systems the ns and np AOs are significantly below the more hydrogen-like nd ones. Even (n+1)s is below nd for all light neutral atoms from C onwards, but only up to the first elements of the respective long rows! The most common orbital order in transition-metal atoms is 3p << 3d < 4s etc. The chemically relevant configuration in group g is always d(g) instead of d(g-2) s(2). Conceptually clear reasoning eliminates apparent textbook inconsistencies between simple quantum-chemical models and the empirical facts. The empirically and theoretically well-founded Rydberg (n-deltal) rule is to be preferred instead of the historical Madelung (n+l) rule with its large number of exceptions.
Heat stress is one of the main threats to dairy cow production; in order to resist heat stress, the animal exhibits a variety of physiological and hormonal responses driven by complex molecular mechanisms. Heat-stressed cows have high insulin activity, decreased non-esterified fatty acids, and increased glucose disposal. Glucose, as one of the important biochemical components of the energetic metabolism, is affected at multiple levels by the reciprocal changes in hormonal secretion and adipose metabolism under the influence of heat stress in dairy cattle. Therefore, alterations in glucose metabolism have negative consequences for the animal’s health, production, and reproduction under heat stress. Lactose is a major sugar of milk which is affected by the reshuffle of the whole-body energetic metabolism during heat stress, contributing towards milk production losses. Glucose homeostasis is maintained in the body by one of the glucose transporters’ family called facilitative glucose transporters (GLUTs encoded by SLC2A genes). Besides the glucose level, the GLUTs expression level is also significantly changed under the influence of heat stress. This review aims to describe the effect of heat stress on systemic glucose metabolism, facilitative glucose transporters, and its consequences on health and milk production.
In this study, amorphous lithium lanthanum titanate (LLTO) powders were prepared by a sol-gel method with an all alkoxide based route. Results showed that unlike its crystalline counterpart which turns into an electronic conductor in direct contact with lithium metal, amorphous LLTO remains to be an ionic conductor and hence is compatible with lithium metal as solid electrolyte although it also undergoes lithium insertion and the consequent reduction of Ti 4+ to Ti 3+ . This striking difference between crystalline and amorphous LLTO could be ascribed to the atomic configuration difference, ordered versus disordered. The electronic states of a disordered system could be localized. It was found that the transference number of lithium ions of amorphous LLTO is over 82%. Our results on electrochemical measurements indicated that amorphous LLTO is stable with blocking electrodes up to 12 V, which can potentially be used with high voltage cathode materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.