Huge citizens expose to social media during a novel coronavirus disease (COVID-19) outbroke in Wuhan, China. We assess the prevalence of mental health problems and examine their association with social media exposure. A cross-sectional study among Chinese citizens aged�18 years old was conducted during Jan 31 to Feb 2, 2020. Online survey was used to do rapid assessment. Total of 4872 participants from 31 provinces and autonomous regions were involved in the current study. Besides demographics and social media exposure (SME), depression was assessed by The Chinese version of WHO-Five Well-Being Index (WHO-5) and anxiety was assessed by Chinese version of generalized anxiety disorder scale (GAD-7). multivariable logistic regressions were used to identify associations between social media exposure with mental health problems after controlling for covariates. The prevalence of depression, anxiety and combination of depression and anxiety (CDA) ) during COVID-19 outbroke in Wuhan, China. More than 80% (95%CI:80.9%-83.1%) of participants reported frequently exposed to social media. After controlling for covariates, frequently SME was positively associated with high odds of anxiety (OR = 1.72, 95%CI: 1.31-2.26) and CDA (OR = 1.91, 95%CI: 1.52-2.41) compared with less SME. Our findings show there are high prevalence of mental health problems, which positively associated with frequently SME during the COVID-19 outbreak. These findings implicated the government need pay more attention to mental health problems, especially depression and anxiety among general population and combating with "infodemic" while combating during public health emergency.
Huge citizens expose to social media during a novel coronavirus disease (COVID-19) outbroke in Wuhan, China. We assess the prevalence of mental health problems and examine their association with social media exposure. A cross-sectional study among Chinese citizens aged�18 years old was conducted during Jan 31 to Feb 2, 2020. Online survey was used to do rapid assessment. Total of 4872 participants from 31 provinces and autonomous regions were involved in the current study. Besides demographics and social media exposure (SME), depression was assessed by The Chinese version of WHO-Five Well-Being Index (WHO-5) and anxiety was assessed by Chinese version of generalized anxiety disorder scale (GAD-7). multivariable logistic regressions were used to identify associations between social media exposure with mental health problems after controlling for covariates. The prevalence of depression, anxiety and combination of depression and anxiety (CDA) was 48.3% (95%CI: 46.9%-49.7%), 22.6% (95%CI: 21.4%-23.8%) and 19.4% (95%CI: 18.3%-20.6%) during COVID-19 outbroke in Wuhan, China. More than 80% (95%CI:80.9%-83.1%) of participants reported frequently exposed to social media. After controlling for covariates, frequently SME was positively associated with high odds of anxiety (OR = 1.72, 95%CI: 1.31-2.26) and CDA (OR = 1.91, 95%CI: 1.52-2.41) compared with less SME. Our findings show there are high prevalence of mental health problems, which positively associated with frequently SME during the COVID-19 outbreak. These findings implicated the government need pay more attention to mental health problems, especially depression and anxiety among general population and combating with "infodemic" while combating during public health emergency.
BackgroundA number of studies have examined the influence of self-efficacy, social support and patient-provider communication (PPC) on self-care and glycemic control. Relatively few studies have tested the pathways through which these constructs operate to improve glycemic control, however. We used structural equation modeling to examine a conceptual model that hypothesizes how self-efficacy, social support and patient-provider communication influence glycemic control through self-care behaviors in Chinese adults with type 2 diabetes.MethodsWe conducted a cross-sectional study of 222 Chinese adults with type 2 diabetes in one primary care center. We collected information on demographics, self-efficacy, social support, patient-provider communication (PPC) and diabetes self-care. Hemoglobin A1c (HbA1c) values were also obtained. Measured variable path analyses were used to determine the predicted pathways linking self-efficacy, social support and PPC to diabetes self-care and glycemic control.ResultsDiabetes self-care had a direct effect on glycemic control (β = −0.21, p = .007), No direct effect was observed for self-efficacy, social support or PPC on glycemic control. There were significant positive direct paths from self-efficacy (β = 0.32, p < .001), social support (β = 0.17, p = .009) and PPC (β = 0.14, p = .029) to diabetes self-care. All of them had an indirect effect on HbA1c (β =–0.06, β =–0.04, β =–0.03 respectively). Additionally, PPC was positively associated with social support (γ = 0.32, p < .001).ConclusionsHaving better provider-patient communication, having social support, and having higher self-efficacy was associated with performing diabetes self-care behaviors; and these behaviors were directly linked to glycemic control. So longitudinal studies are needed to explore the effect of self-efficacy, social support and PPC on changes in diabetes self-care behaviors and glycemic control.
Background Well-designed mobile health (mHealth) interventions support a positive user experience; however, a high rate of disengagement has been reported as a common concern regarding mHealth interventions. To address this issue, it is necessary to summarize the design features that improve user engagement based on research over the past 10 years, during which time the popularity of mHealth interventions has rapidly increased due to the use of smartphones. Objective The aim of this review was to answer the question “Which design features improve user engagement with mHealth interventions?” by summarizing published literature with the purpose of guiding the design of future mHealth interventions. Methods This review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist. Databases, namely, PubMed, Web of Science, Cochrane Library, Ovid EMBASE, and Ovid PsycINFO, were searched for English and Chinese language papers published from January 2009 to June 2019. Thematic analysis was undertaken to assess the design features in eligible studies. The Mixed Methods Appraisal Tool was used to assess study quality. Results A total of 35 articles were included. The investigated mHealth interventions were mainly used in unhealthy lifestyle (n=17) and chronic disease (n=10) prevention programs. Mobile phone apps (n=24) were the most common delivery method. Qualitative (n=22) and mixed methods (n=9) designs were widely represented. We identified the following 7 themes that influenced user engagement: personalization (n=29), reinforcement (n=23), communication (n=20), navigation (n=17), credibility (n=16), message presentation (n=16), and interface aesthetics (n=7). A checklist was developed that contained these 7 design features and 29 corresponding specific implementations derived from the studies. Conclusions This systematic review and thematic synthesis identified useful design features that make an mHealth intervention more user friendly. We generated a checklist with evidence-based items to enable developers to use our findings easily. Future evaluations should use more robust quantitative approaches to elucidate the relationships between design features and user engagement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.