A combined numerical and experimental method study was performed to detect the inner flow state for a type of centrifugal pump. It was found that the inlet attack angles of blades in an impeller have a great influence on the flow instabilities in a centrifugal pump. The mechanism of the rotating stall in the impeller channel was explained. Meanwhile, flow state identification with vibration (FSIV) was proposed to detect the flow instabilities in a centrifugal pump. The relationship between the external vibration and the inner flow state has been established by FSIV. The characteristics and mechanism of the vibration produced by the flow instabilities in a centrifugal pump were investigated. It was found that the hump, the rotating stall, the backflow, the occurrence of unstable flow, and the cavitation in the centrifugal pump can be effectively detected by applying the vibration signals, which helps to obtain safe and steady operating conditions for the system.
In order to investigate the mechanism and the characteristics of the noise induced by unstable flow in a centrifugal pump, the internal flow characteristics in the pump were numerically researched, and the acoustic pressure fluctuations at the pump inlet and outlet were experimentally investigated. Obvious corresponding relationships between the flow instabilities, the cavitation and the noise were established. It was found that the rotating stall, the backflow, the hump, the occurrence of unstable flow and the cavitation in such a centrifugal pump were effectively detected through the noise, which could help to provide fundamental information on flow instabilities and guarantee safe and steady operating conditions for the system. The recirculation and prewhirl regions in the pump upstream pipe, which were caused by the backflow and the rotation of the impeller, presented the circumferential movement with a spiral shape, causing apparent broadband fluctuations at low frequency band of the acoustic pressure. The backflow and rotating stall could also result in broadband fluctuations of the pump outlet noise, which was distributed from 100 Hz to 150 Hz. Meanwhile, the broadband fluctuations of the pump outlet acoustic pressure distributed in the low frequency range, which was produced by the occurrence of cavitation, moved to the lower frequency band as the flow rate increased. The enhanced broadband fluctuations of the pump inlet and outlet noise distributed from 1 kHz to 6 kHz were caused by the coupling between the cavitation-induced noise and the system-produced noise. The broadband fluctuations of the pump inlet noise distributed between 6 kHz and 9 kHz were regarded as the typical frequency band of cavitation in the centrifugal pump.
As the key component of a hydroelectric power generation system, hydraulic turbine plays a decisive role in the overall performance of the system. There are many sandy rivers in the world, and turbines working in these rivers are seriously damaged. Therefore, the research of flow in sandy water has great theoretical significance and practical value. Based on the specific hydrological conditions of a hydropower station, the solid-liquid two-phase flow in the whole flow passage of a Francis turbine with splitter blades in sandy water was numerically studied. A geometric model of the whole flow passage of the Francis turbine was established on the basis of given design parameters. The solid-liquid two-phase turbulent flows in Francis turbine runner under three different loads were numerically analyzed by using this model. The three different loads are as follows: Condition 1: single unit with 1/4 load, Condition 2: single unit with 1/2 load, and Condition 3: single unit with full load. The distributions of pressure and sand concentration on the leading side and the suction side of the runner blades, as well as the velocity vector distribution of water and sand on the horizontal section of the runner, were obtained under different load conditions. Therefore, the damages to various flow passage components by sand can be qualitatively predicated under various conditions. To guarantee the safety and stability of the unit, the adverse conditions shall be avoided, which can provide certain reference for plant operation.
With the use of the RNG k-ε turbulence model and the SIMPLEC algorithm, as well as after the secondary development of the software Fluent, the velocity field and pressure field of a axial flow impeller were numerically simulated in the single-phase (clear water) and the solid-liquid two-phase conditions. The distributions of pressure, velocity and solid concentration in the impeller under the single-phase flow and the solid-liquid two-phase flow conditions were compared. This study has shown that the numerical simulation results are the same as the actual situation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.