In this study, we investigated whether the protective effects of Neonauclea reticulata water extract against ultraviolet B (UVB) irradiation in human skin fibroblast cell cultures (Hs68) are governed by its ability to protect against oxidative stress and expression of matrix metalloproteinases (MMPs). We found that Neonauclea reticulata extract exhibited DPPH scavenging activity and inhibited AAPH-induced haemolysis of erythrocytes in a dose- and time-dependent manner. We also found that pretreatment of fibroblasts with Neonauclea reticulata water extract resulted in markedly lower levels of MMP-1, -3, and -9 expressions. Furthermore, our results indicate that Neonauclea reticulata extract inhibits the expression of MMPs by inhibiting ERK, JNK, and p38 phosphorylation. Our results also demonstrate that treatment with Neonauclea reticulata extract protects against UVB-induced depletion of collagen. In addition, Neonauclea reticulata extract did not have a cytotoxic effect. These findings indicate that the antioxidant activity of Neonauclea reticulata extract resulted in inhibition of MMP-1, -3, and -9 expressions and in increased levels of collagen activity. Our results suggest that Neonauclea reticulata extract can protect against photoaging.
In this study, we investigated the antioxidant activity and anti-photoaging properties of an extract of Flemingia macrophylla, a plant rich in isoflavonoid content. Pretreatment of fibroblasts with Flemingia macrophylla extract (FME) inhibited elastase activity, promoted the protein expression of type I procollagen, and attenuated the phosphorylation of mitogen-activated protein (MAP) kinase and the protein expression of matrix-metalloproteinase- (MMP-) 1, 3, and 9. The IC50 values were 2.1 μg/mL for DPPH radical scavenging ability, 366.8 μg/mL for superoxide anion scavenging ability, 178.9 μg/mL for hydrogen peroxide scavenging ability, and 230.9 μg/mL for hydroxyl radical scavenging ability. Also, exposure of erythrocytes to various concentrations of FME (50–500 μg/mL) resulted in a dose- and time-dependent inhibition of AAPH-induced hemolysis. In human fibroblasts, FME at 10 μg/mL was shown to be a potent scavenger of UV-induced reactive oxygen species (ROS). The antioxidant and anti-photoaging properties of FME make it an ideal anti-intrinsic aging and anti-photoaging agent.
Polyphenols and flavonoids possess a variety of biological activities including antioxidant and anti-tumor activities. Ixora parviflora is a member of the flavonoid-rich Rubiaceae family of flowering plants and used as folk medicine in India. The aim of this study was to investigate the antioxidant activity of Ixora parviflora extract (IPE) in a cell-free system and erythrocytes, and the ability of IPE to inhibit reactive oxygen species (ROS) generation in human fibroblasts (Hs68) after ultraviolet (UV) exposure. Various in vitro antioxidant assays were employed in this study. The extraction yield of IPE was 17.4 ± 3.9%, the total phenolic content of IPE was 26.2 μg gallic acid equivalent (GAE)/mg leaves dry weight and the total flavonoids content was 54.2 ± 4.4 μg quercetin equvalent (QE)/mg extract. The content of chlorogenic acid was 9.7 ± 1.2 mg/g extract. IPE at 1000 μg/mL exhibited a reducing capacity of 90.5 ± 0.6%, a 1,1-diphenyl-2-picrylhydrazy (DPPH) radical scavenging activity of 96.0 ± 0.4%, a ferrous chelating activity of 72.2 ± 3.5%, a hydroxyl radical scavenging activity of 96.8 ± 1.4%, and a hydrogen peroxide scavenging activity of 99.5 ± 3.3%. IPE at 500 μg/mL also possessed inhibitory activity against 2,2′-azobis (2-methylpropionamidine) dihydrochloride (AAPH)-induced hemolysis of erythrocytes (89.4 ± 1.8%) and resulted in a 52.9% reduction in ROS generation in UV-exposed fibroblasts. According to our findings, IPE is a potent antioxidant and a potential anti-photoaging agent.
These findings also highlight the need to prompt further prospective studies on more cases of CRC to further establish the clinical relevance of activating KRAS mutation detection from peripheral blood in anti- EGFR-based chemotherapy that uses activating KRAS detection chips and the WCHMA analysis method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.