Potentilleae, one of 10 tribes of the Rosaceae, are mainly distributed in alpine regions of the Northern Hemisphere. The taxonomy of Potentilleae has been challenging due to extensive hybridization, polyploidization, and/or apomixis characterizing several genera of Potentilleae, such as Alchemilla, Argentina, and Potentilla. To help clarify relationships within Potentilleae, a phylogenetic analysis of the tribe with an emphasis on the polyphyletic genus Sibbaldia was carried out using nuclear ribosomal internal and external transcribed spacer regions and the plastid trnL‐F and trnS‐G spacer regions. In agreement with previous phylogenetic analyses, three major clades were identified in the present study: the subtribe Fragariinae, the genera Argentina, and Potentilla. The 15 species of Sibbaldia were recovered in five distinct clades: three in subtribe Fragariinae, one in Argentina, and the last in Potentilla. The recently established genus Chamaecallis, comprising a single species formerly treated in Sibbaldia that has intermediate floral character states with respect to Fragariinae and Potentilla, was recovered as sister to Drymocallis. Morphological character state reconstruction indicated that a reduction in the number of stamens (≤10) is a derived character state that has arisen multiple times in Potentilleae. Molecular dating analyses agreed with previously published estimates and suggested that crown group Potentilleae arose in the Middle to Late Eocene, with most generic‐level divergences occurring in the Oligocene and Miocene.
Torreya Arn., a small genus of Taxaceae, consists of six species occurring in North America and eastern Asia. Several phylogenetic studies have previously been undertaken to reveal relationships within this genus, although only a few DNA segments or species were used. In the present study, we sequenced five Torreya plastomes and combined these with two existing plastomes from the genus to investigate plastome evolution and phylogenetic relationships within Torreya. All sequenced Torreya plastomes shared the same complement of 82 protein‐coding genes, 4 ribosomal RNA genes, and 31 transfer RNA genes. Phylogenetic inference using a maximum likelihood framework consisted of an 82‐gene, 17‐taxon dataset, including all species of Torreya, resolved Torreya as a monophyletic clade. Strongly supported relationships within the genus include the position of the early diverging T. jackii Chun, the two sister pairs T. fargesii Franch.–T. nucifera (L.) Siebold & Zucc. and T. grandis Fortune ex Lindl.–T. californica Torr., and the monophyly of the clade including T. fargesii var. yunnanensis, T. fargesii, and T. nucifera. In addition to the inference of species relationships, divergence time estimation and biogeographical analysis were carried out. The diversification of Torreya was estimated to be approximately 8.9 Ma. Ancestral state reconstruction of the geographical area suggested China/eastern North America as the most likely ancestral region for the six extant Torreya species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.