RNase III proteins play key roles in microRNA (miRNA) biogenesis. The nuclear RNase III Drosha cleaves primary miRNAs (pri-miRNAs) to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic RNase III Dicer to generate mature miRNAs. While Dicer (class III) and other simple RNase III proteins (class I) have been studied intensively, the class II enzyme Drosha remains to be characterized. Here we dissected the action mechanism of human Drosha by generating mutants and by characterizing its new interacting partner, DGCR8. The basic action mechanism of Drosha was found to be similar to that of human Dicer; the RNase III domains A and B form an intramolecular dimer and cleave the 3 and 5 strands of the stem, respectively. Human Drosha fractionates at ∼650 kDa, indicating that Drosha functions as a large complex. In this complex, Drosha interacts with DGCR8, which contains two double-stranded RNA (dsRNA)-binding domains. By RNAi and biochemical reconstitution, we show that DGCR8 may be an essential component of the pri-miRNA processing complex, along with Drosha. Based on these results, we propose a model for the action mechanism of class II RNase III proteins.[Keywords: microRNA; Drosha; DGCR8; processing] Supplemental material is available at http://www.genesdev.org.
SummaryA single radish nuclear gene, Rfo, restores Ogura (ogu) cytoplasmic male sterility (CMS) in Brassica napus. A map-based cloning approach relying on synteny between radish and Arabidopsis was used to clone Rfo. A radish gene encoding a 687-amino-acid protein with a predicted mitochondrial targeting pre-sequence was found to confer male fertility upon transformation into ogu CMS B. napus. This gene, like the recently described Petunia Rf gene, codes for a pentatricopeptide repeat (PPR)-containing protein with multiple, in this case 16, PPR domains. Two similar genes that do not appear to function as Rfo flank this gene.Comparison of the Rfo region with the syntenic Arabidopsis region indicates that a PPR gene is not present at the Rfo-equivalent site in Arabidopsis, although a smaller and related PPR gene is found about 40 kb from this site. The implications of these findings for the evolution of restorer genes and other PPR encoding genes are discussed.
RNA transcripts are bound and regulated by RNA-binding proteins (RBPs). Current methods for identifying in vivo targets of a RBP are imperfect and not amenable to examining small numbers of cells. To address these issues, we developed TRIBE (Targets of RNA-binding proteins Identified By Editing), a technique that couples an RBP to the catalytic domain of the Drosophila RNA editing enzyme ADAR and expresses the fusion protein in vivo. RBP targets are marked with novel RNA editing events and identified by sequencing RNA. We have used TRIBE to identify the targets of three RBPs (Hrp48, dFMR1 and NonA). TRIBE compares favorably to other methods, including CLIP, and we have identified RBP targets from as little as 150 specific fly neurons. TRIBE can be performed without an antibody and in small numbers of specific cells.
How body size is determined is a long-standing question in biology, yet its regulatory mechanisms remain largely unknown. Here, we find that a conserved microRNA miR-8 and its target, USH, regulate body size in Drosophila. miR-8 null flies are smaller in size and defective in insulin signaling in fat body that is the fly counterpart of liver and adipose tissue. Fat body-specific expression and clonal analyses reveal that miR-8 activates PI3K, thereby promoting fat cell growth cell-autonomously and enhancing organismal growth non-cell-autonomously. Comparative analyses identify USH and its human homolog, FOG2, as the targets of fly miR-8 and human miR-200, respectively. USH/FOG2 inhibits PI3K activity, suppressing cell growth in both flies and humans. FOG2 directly binds to p85alpha, the regulatory subunit of PI3K, and interferes with the formation of a PI3K complex. Our study identifies two novel regulators of insulin signaling, miR-8/miR-200 and USH/FOG2, and suggests their roles in adolescent growth, aging, and cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.