In this paper we review a particular connection between information theory and group theory. We formalize the notions of information elements and information lattices, first proposed by Shannon. Exploiting this formalization, we expose a comprehensive parallelism between information lattices and subgroup lattices. Qualitatively, isomorphisms between information lattices and subgroup lattices are demonstrated. Quantitatively, a decisive approximation relation between the entropy structures of information lattices and the log-index structures of the corresponding subgroup lattices, first discovered by Chan and Yeung, is highlighted. This approximation, addressing both joint and common entropies, extends the work of Chan and Yeung on joint entropy. A consequence of this approximation result is that any continuous law holds in general for the entropies of information elements if and only if the same law holds in general for the log-indices of subgroups. As an application, by constructing subgroup counterexamples, we find surprisingly that common information, unlike joint information, obeys neither the submodularity nor the supermodularity law. We emphasize that the notion of information elements is conceptually significant-formalizing it helps to reveal the deep connection between information theory and group theory. The parallelism established in this paper admits an appealing group-action explanation and provides useful insights into the intrinsic structure among information elements from a group-theoretic perspective.
Based on the direct product of Boolean algebra and Lukasiewicz algebra, six lattice-valued logic is put forward in this paper. The algebraic structure and properties of the lattice are analyzed profoundly and the tautologies of six-valued logic system L6P(X) are discussed deeply. The researches of this paper can be used in lattice-valued logic systems and can be helpful to automated reasoning systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.