The first copper-catalyzed enantioselective [4 + 1] annulation of yne-allylic esters with 1,3-dicarbonyl compounds was realized through an elegant remote stereocontrol strategy. The very remote ε regioselective nucleophilic substitution was developed by employing a novel chiral copper-vinylvinylidene species from the new C4 synthon yne-allylic esters. Thus, greatly diverse spirocycles were obtained with ample scope and excellent levels of chemo-, regio-, and enantioselectivities. Moreover, detailed mechanistic studies suggest an yne-allylic substitution and Conia-ene cascade pathway on the remote stereochemical induction progress.
Distinct regio-and enantioselectivity control in coppercatalyzed vinylogous and bisvinylogous propargylic substitution has been accomplished by using a novel chiral N,N,P ligand. The developed method provides an efficient and selective approach to an array of highly enantioenriched alkynyl unsaturated carbonyl compounds. Salient features include excellent functional group tolerance and broad substrate scope. The synthetic utility of the developed method is further demonstrated by a gram-scale synthesis and by application to a range of transformations including enantioselective synthesis of unique challenging compounds.
Organic electrochemistry has attracted tremendous interest within the novel sustainable methodologies that have not only reduced the undesired byproducts, but also utilized cleaner and renewable energy sources. Particularly, oxidative electrochemistry has gained major attention. On the contrary, reductive electrolysis remains an underexplored research direction. In this context, we discuss advances in transition-metal-free cathodically generated radicals for selective organic transformations since 2016. We highlight the electroreductive reaction of alkyl radicals, aryl radicals, acyl radicals, silyl radicals, fluorosulfonyl radicals and trifluoromethoxyl radicals.
Vinyl fluorides play an important role in drug development as they serve as bioisosteres for peptide bonds and are found in a range of biologically active molecules. The discovery of safe, general and practical procedures to prepare vinyl fluorides remains an important goal and challenge for synthetic chemistry. Here we introduce an inexpensive and easily-handled reagent and report simple, scalable, and metal-free protocols for the regioselective and stereodivergent hydrofluorination of alkynes to access both the E and Z isomers of vinyl fluorides. These conditions were suitable for a diverse collection of alkynes, including several highly-functionalized pharmaceutical derivatives. Mechanistic and DFT studies support C–F bond formation through a vinyl cation intermediate, with the (E)- and (Z)-hydrofluorination products forming under kinetic and thermodynamic control, respectively.<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.