Recombinant bacterial vaccines must be fully attenuated for animal or human hosts to avoid inducing disease symptoms while exhibiting a high degree of immunogenicity. Unfortunately, many well-studied means for attenuating Salmonella render strains more susceptible to host defense stresses encountered following oral vaccination than wild-type virulent strains and/or impair their ability to effectively colonize the gut-associated and internal lymphoid tissues. This thus impairs the ability of recombinant vaccines to serve as factories to produce recombinant antigens to induce the desired protective immunity. To address these problems, we designed strains that display features of wild-type virulent strains of Salmonella at the time of immunization to enable strains first to effectively colonize lymphoid tissues and then to exhibit a regulated delayed attenuation in vivo to preclude inducing disease symptoms. We recently described one means to achieve this based on a reversible smooth-rough synthesis of lipopolysaccharide O antigen. We report here a second means to achieve regulated delayed attenuation in vivo that is based on the substitution of a tightly regulated araC P BAD cassette for the promoters of the fur, crp, phoPQ, and rpoS genes such that expression of these genes is dependent on arabinose provided during growth. Thus, following colonization of lymphoid tissues, the Fur, Crp, PhoPQ, and/or RpoS proteins cease to be synthesized due to the absence of arabinose such that attenuation is gradually manifest in vivo to preclude induction of diseases symptoms. Means for achieving regulated delayed attenuation can be combined with other mutations, which together may yield safe efficacious recombinant attenuated Salmonella vaccines.
Recombinant attenuated Salmonella vaccines (RASVs) have been used extensively to express and deliver heterologous antigens to host mucosal tissues. Immune responses can be enhanced greatly when the antigen is secreted to the periplasm or extracellular compartment. The most common method for accomplishing this is by fusion of the antigen to a secretion signal sequence. Finding an optimal signal sequence is typically done empirically. To facilitate this process, we constructed a series of plasmid expression vectors, each containing a different type II signal sequence. We evaluated the utilities of these vectors by fusing two different antigens, the ␣-helix domains of pneumococcal surface protein A (PspA) and pneumococcal surface protein C (PspC), to the signal sequences of -lactamase (bla SS), ompA, and phoA and the signal sequence and C-terminal peptide of -lactamase (bla SS؉CT) on Asd ؉ plasmids under the control of the P trc promoter. Strains were characterized for level of expression, subcellular antigen location, and the capacity to elicit antigen-specific immune responses and protection against challenge with Streptococcus pneumoniae in mice. The immune responses to each protein differed depending on the signal sequence used. Strains carrying the bla SS-pspA and bla SS؉CT-pspC fusions yielded the largest amounts of secreted PspA and PspC, respectively, and induced the highest serum IgG titers, although all fusion proteins tested induced some level of antigen-specific IgG response. Consistent with the serum antibody responses, RASVs expressing the bla SS-pspA and bla SS؉CT-pspC fusions induced the greatest protection against S. pneumoniae challenge.
Clostridium perfringens-induced necrotic enteritis (NE) is a widespread disease in chickens that causes high mortality and reduced growth performance. Traditionally, NE was controlled by the routine application of antimicrobials in the feed, a practice that currently is unpopular. Consequently, there has been an increase in the occurrence of NE, and it has become a threat to the current objective of antimicrobial-free farming. The pathogenesis of NE is associated with the proliferation of C. perfringens in the small intestine and the secretion of large amounts of alpha toxin, the major virulence factor. Since there is no vaccine for NE, we have developed a candidate live oral recombinant attenuated Salmonella enterica serovar Typhimurium vaccine (RASV) that delivers a nontoxic fragment of alpha toxin. The 3 end of the plc gene, encoding the C-terminal domain of alpha toxin (PlcC), was cloned into plasmids that enable the expression and secretion of PlcC fused to a signal peptide. Plasmids were inserted into Salmonella enterica serovar Typhimurium host strain 8914, which has attenuating pabA and pabB deletion mutations. Three-day-old broiler chicks were orally immunized with 10 9 CFU of the vaccine strain and developed alpha toxin-neutralizing serum antibodies. When serum from these chickens was added into C. perfringens broth cultures, bacterial growth was suppressed. In addition, immunofluorescent microscopy showed that serum antibodies bind to the bacterial surface. The immunoglobulin G (IgG) and IgA titers in RASV-immunized chickens were low; however, when the chickens were given a parenteral boost injection with a purified recombinant PlcC protein (rPlcC), the RASV-immunized chickens mounted rapid high serum IgG and bile IgA titers exceeding those primed by rPlcC injection. RASV-immunized chickens had reduced intestinal mucosal pathology after challenge with virulent C. perfringens. These results indicate that oral RASV expressing an alpha toxin C-terminal peptide induces protective immunity against NE.
Necrotic enteritis (NE), caused by Gram-positive Clostridium perfringens type A strains, has gained more attention in the broiler industry due to governmental restrictions affecting the use of growth-promoting antibiotics in feed. To date, there is only one commercial NE vaccine available, based on the C. perfringens alpha toxin. However, recent work has suggested that the NetB toxin, not alpha toxin, is the most critical virulence factor for causing NE. These findings notwithstanding, it is clear from prior research that immune responses against both toxins can provide some protection against NE. In this study, we delivered a carboxyl-terminal fragment of alpha toxin and a GST-NetB fusion protein using a novel attenuated Salmonella vaccine strain designed to lyse after 6-10 rounds of replication in the chicken host. We immunized birds with vaccine strains producing each protein individually, a mixture of the two strains, or with a single vaccine strain that produced both proteins. Immunization with strains producing either of the single proteins was not protective, but immunization with a mixture of the two or with a single strain producing both proteins resulted in protective immunity. The vaccine strain synthesizing both PlcC and GST-NetB was able to elicit strong production of intestinal IgA, IgY, and IgM antibodies and significantly protect broilers against C. perfringens challenge against both mild and severe challenges. Although not part of our experimental plan, the broiler chicks we obtained for these studies were apparently contaminated during transit from the hatchery with group D Salmonella. Despite this drawback, the vaccines worked well, indicating applicability to real-world conditions.
Despite the fact that the presence of multiple large plasmids is a defining feature of extraintestinal pathogenic Escherichia coli (ExPEC), such as avian pathogenic E. coli (APEC), and despite the fact that these bacteria pose a considerable threat to both human and animal health, characterization of these plasmids is still limited. In this study, after successfully curing APEC of its plasmids, we were able to investigate, for the first time, the contribution to virulence of three plasmids, pAPEC-1 (103 kb), pAPEC-2 (90 kb), and pAPEC-3 (60 kb), from APEC strain 7122 individually as well as in all combinations in the wild-type background. Characterization of the different strains revealed unique features of APEC virulence. In vivo assays showed that curing the three plasmids resulted in severe attenuation of virulence. The presence of different plasmids and combinations of plasmids resulted in strains with different pathotypes and levels of virulence, reflecting the diversity of APEC strains associated with colibacillosis in chickens. Unexpectedly, our results associated the decrease in growth of some strains in some media with the virulence of APEC, and the mechanism was associated with some combinations of plasmids that included pAPEC-1. This study provided new insights into the roles of large plasmids in the virulence, growth, and evolution of APEC by showing for the first time that both the nature of plasmids and combinations of plasmids have an effect on these phenomena. It also provided a plausible explanation for some of the conflicting results related to the virulence of ExPEC strains. This study should help us understand the virulence of other ExPEC strains and design more efficient infection control strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.