Synovial sarcoma is a soft tissue sarcoma with poor prognosis and lack of response to conventional cytotoxic chemotherapy. The regulatory mechanisms for the rapid proliferation of synovial sarcoma cells and the particular aggressiveness of this sarcoma remain poorly understood. Mitogen-activated protein kinase (MAPK) cascades have been shown to play important roles in synovial sarcoma survival. Sorafenib (Nexavar, BAY 43-9006), a potent recombinant activated factor (RAF) inhibitor, inhibits the MAPK signaling pathway both in vitro and in vivo. In this study, we examined the inhibitory proliferation effects of sorafenib in synovial sarcoma growth and evaluated whether sorafenib modulates MAPK and tumor apoptosis cascades in human synovial sarcoma cell lines SW982 and HS-SY-II. Our results indicated that sorafenib effectively inhibited cellular proliferation and induces apoptosis of these two cells. Sorafenib inhibited the phosphorylation of MEK and ERK, downregulated cyclin D1 and Rb levels, caused G(1) arrest and S phase decrease, and induced apoptosis as confirmed by flow cytometry and the TUNEL assay. Furthermore, Bcl-xl and Mcl-1 levels significantly decreased, whereas expression levels of the proteins bcl-2 and bax were unchanged in response to sorafenib treatment in SW982 and HS-SY-II cells. In conclusion, our findings demonstrate that sorafenib is effective for growth inhibition of synovial sarcoma cell lines in vitro and suggest that sorafenib may be a new therapeutic option for patients with synovial sarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.