Long-offset transient electromagnetic (LOTEM) has received great attention in mineral, hydrocarbon and hydrogeological investigations for the last several years. Conventionally, TEM soundings have been presented as apparent resistivity curves as function of time. With development of sophisticated computational algorithms, it became possible to extract more realistic geoelectric information by applying inversion programs to 1-D and 3-D problems. Here, we analyze LOTEM data by carrying out analysis in time, frequency and pseudo-seismic domain supported by borehole information. At first, H, K, A & Q type geoelectric models are processed using a proven inversion program (1-D Occam inversion). Second, time-to-frequency transformation is conducted from TEM ρ
a
( f) curves for the same models based on all-time apparent resistivity curves. Third, 1-D Bostick's algorithm was applied to the transformed resistivity. Finally, EM diffusion field is transformed into propagating wave field and constructed pseudo-seismic section. The transformed seismic-like wave indicates that some reflection and refraction phenomena appear when the EM wave field interacts with a geoelectric interface at different depth intervals due to contrast in resistivity. In all three cases, synthetic tests showed that conductive anomaly in resistive host environment can be retrieved more clearly than resistive target. A case study illustrates the successful application of proposed approach in recovering a water-filled mined-out area in a coal field located in Ye county, Henan province, China. The results support the introduction of pseudo-seismic imaging technology in long-offset version of TEM which can also be an useful aid if integrated with seismic reflection technique to explore possibilities for high resolution EM imaging in future.
[Figure: see text]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.