The overexpression of gap junction proteins in glioma cells and the intercellular communication between tumor and nontumor glia cells may play important roles in the facilitation of glioma cell invasion.
These results indicate that functional gap junction formation between human malignant glioma cells and VECs occurs. This communication appears to influence tumor angiogenesis. Targeting gap junction signaling may offer a potential mechanism for therapy in patients with these tumors.
The beta2-adrenoreceptor agonist, clenbuterol, has been shown to spare spinal cord tissue and enhance locomotor recovery in an experimental model of spinal cord contusion injury. A likely mechanism of neurodegeneration following spinal cord injury involves generation of toxic levels of reactive oxygen species (ROS), e.g., O2-*, H2O2 and OH*, which overwhelm endogenous antioxidants. Agents, such as clenbuterol, that oppose neurodegeneration and improve recovery of locomotor function may possibly act by improving redox status. Consistent with reduced oxidative stress by beta2-agonist treatment following injury, prior blockade of synthesis of the antioxidant tripeptide, glutathione, with buthionine sulfoximine completely inhibited the ability of clenbuterol to enhance locomotor recovery and spare spinal cord tissue. Moreover, at 8 h postinjury, clenbuterol caused an increase in glutathione reductase activity, an indicator of cellular redox status, at the injury site that was also blocked by buthionine sulfoximine. Although clenbuterol improved locomotor recovery only when administered within a therapeutic window of several days postinjury, the accumulation of protein carbonyls in the spinal cord at 1 week postinjury, a consequence of ongoing ROS-mediated neurodegeneration, was also decreased by clenbuterol in a glutathione-dependent manner. Together, these results suggest that activation of beta2-adrenoreceptors during the acute phase of injury stimulates glutathione-dependent antioxidative processes, that lead to reduced oxidative damage and greater locomotor function as the injury evolves during the subacute and chronic phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.