Macrophages acquire distinct phenotypes during tissue stress and inflammatory responses, but the mechanisms that regulate the macrophage polarization are poorly defined. Here we show that tuberous sclerosis complex 1 (TSC1) is a critical regulator of M1 and M2 phenotypes of macrophages. Mice with myeloid-specific deletion of TSC1 exhibit enhanced M1 response and spontaneously develop M1-related inflammatory disorders. However, TSC1-deficient mice are highly resistant to M2-polarized allergic asthma. Inhibition of the mammalian target of rapamycin (mTOR) fails to reverse the hypersensitive M1 response of TSC1-deficient macrophages, but efficiently rescues the defective M2 polarization. Deletion of mTOR also fails to reverse the enhanced inflammatory response of TSC1-deficient macrophages. Molecular studies indicate that TSC1 inhibits M1 polarization by suppressing the Ras GTPase-Raf1-MEK-ERK pathway in mTOR-independent manner, whereas TSC1 promotes M2 properties by mTOR-dependent CCAAT/enhancer-binding protein-b pathways. Overall, these findings define a key role for TSC1 in orchestrating macrophage polarization via mTOR-dependent and independent pathways.
In the mammalian brain, the specificity of excitatory synaptic transmission depends on rapid diffusion of glutamate away from active synapses and the powerful uptake capacity of glutamate transporters in astrocytes. The extent to which neuronal glutamate transporters influence the lifetime of glutamate in the extracellular space remains unclear. Here we show that EAAC1, the predominant neuronal glutamate transporter at excitatory synapses in hippocampal area CA1, buffers glutamate released during synaptic events and prolongs the time course of its clearance by astrocytes. EAAC1 does not significantly alter activation of receptors in the synaptic cleft. Instead, it reduces recruitment of perisynaptic/extrasynaptic NR2B-containing NMDARs, thereby facilitating induction of long-term potentiation by short burstsofhigh-frequencystimulation.WedescribenovelrolesofEAAC1inregulatingglutamatediffusionandproposethatNMDARsatdifferent subsynaptic locations can make distinct contributions to the regulation of synaptic strength.
Autoreactive B lymphocytes first encountering self-antigens in peripheral tissues are normally regulated by induction of anergy or apoptosis. According to the “two-signal” model, antigen recognition alone should render B cells tolerant unless T cell help or inflammatory signals such as lipopolysaccharide are provided. However, no such signals seem necessary for responses to T-independent type 2 (TI-2) antigens, which are multimeric antigens lacking T cell epitopes and Toll-like receptor ligands. How then do mature B cells avoid making a TI-2–like response to multimeric self-antigens? We present evidence that TI-2 antigens decorated with ligands of inhibitory sialic acid–binding Ig-like lectins (siglecs) are poorly immunogenic and can induce tolerance to subsequent challenge with immunogenic antigen. Two siglecs, CD22 and Siglec-G, contributed to tolerance induction, preventing plasma cell differentiation or survival. Although mutations in CD22 and its signaling machinery have been associated with dysregulated B cell development and autoantibody production, previous analyses failed to identify a tolerance defect in antigen-specific mutant B cells. Our results support a role for siglecs in B cell self-/nonself-discrimination, namely suppressing responses to self-associated antigens while permitting rapid “missing self”–responses to unsialylated multimeric antigens. The results suggest use of siglec ligand antigen constructs as an approach for inducing tolerance.
Treatment dropout is a problem of great prevalence and stands as an obstacle to recovery in cocaine-dependent (CD) individuals. Treatment attrition in CD individuals may result from impairments in cognitive control, which can be reliably measured by the Stroop color-word interference task. The present analyses contrasted baseline performance on the color-naming, word-reading, and interference subtests of the Stroop task in CD subjects who completed a cocaine treatment trial (completers: N ¼ 50) and those who dropped out of the trial before completion (non-completers: N ¼ 24). A logistic regression analysis was used to predict trial completion using three models with the following variables: the Stroop task subscale scores (Stroop model); the Hamilton depression rating scale (HDRS) scores (HDRS model); and both the Stroop task subscale scores and HDRS scores (Stroop and HDRS model). Each model was able to significantly predict group membership (completers vs non-completers) better than a model based on a simple constant (HDRS model p ¼ 0.02, Stroop model p ¼ 0.006, and Stroop and HDRS model p ¼ 0.003). Models using the Stroop preformed better than the HDRS model. These findings suggest that the Stroop task can be used to identify cocaine-dependent subjects at risk for treatment dropout. The Stroop task is a widely available, reliable, and valid instrument that can be easily employed to identify and tailor interventions of at risk individuals in the hope of improving treatment compliance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.