In recent years, hazardous e-mails arose, such as the e-mails infected with 'viruses' or 'worms' spreading destructive programs and the 'Phishing Mails' defrauding e-mail accounts of the users. The number of spams continue to grow. With the related problems of spam coming to be more severe, the spam topics have become significant in various research domains. The common filtering methods include black/white list, rule learning, and those based on text classification, such as Naïve Bayes, support vector machine, and boosting trees, multi-agent and genetic algorithm. Among these, the methods based on text classification are most widely applied. Moreover, some efficient methods were proposed to consider only the e-mail's header section, based on which both operating efficiency and classification efficiency could be improved. By applying machine learning technique and decision tree data mining algorithm C4.5, this study aims to propose an efficient spam filtering method with the following features: (i) proposing a two-phase filtering mechanism to scan mainly e-mail's header and auxiliary content. (ii) Reducing the problem of false positive. The experimental results show that the authors' method has a considerably high accuracy rate of 98.76%. Compared with some other methods of using the same spam data sets or of deep learning-based, their method obviously has an excellent performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.